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High-pressure hydrogen exhibits remarkable phenomena including the insulator-to-metal (IM)
transition, however, a complete resolution of its phase diagram is still an elusive goal despite many
efforts and much controversy. Theoretical modeling is typically based on density-functional theory
(DFT) with a mean-field description of electronic correlations, which is known to be rather limited
in describing IM transitions. Herein, we show that nonlocal electron correlations play a central role
in the relative stability of solid hydrogen phases, and that DFT corrected for these correlations by
the many-body dispersion (MBD) model reaches the accuracy of quantum Monte–Carlo (QMC)
simulations and predicts the same C2/c-24→Cmca-12→Cs(IV) IM transition. In contrast with
the conventional assumption that many-body electronic correlations become localized in metallic
systems because of exponential screening with interelectronic distance, we find that the anisotropy
of electronic response of hydrogen solids under pressure leads to longer-ranged many-body effects
in metallic phases relative to insulating ones. This reshapes our understanding of phase diagram of
hydrogen solids as well as anisotropic many-body correlations.

Despite its apparent simplicity, hydrogen forms diverse
high-pressure solid and liquid phases [1, 2], which exhibit
remarkable physical phenomena such as the insulator-to-
metal (IM) transition or dissipationless quantum states,
including metallic and superconducting superfluids [3–
9]. Due to its consequences for astrophysics as well as
out of sheer fundamental interest, the characterization of
the phase diagram of dense hydrogen has attracted much
effort. Yet, while many of the phases and the transitions
between them have been determined beyond any doubt,
a large portion of the phase diagram remains unresolved,
and experiments pushing the pressure boundaries further
often turn out to be controversial.
The characterization of the crystal and electronic

structure of the solid phases of hydrogen is essential for
our understanding of its high-pressure behavior. Exper-
imental difficulties at the required level of pressure stem
from the instability of even the hardest materials such
as diamond to mechanical and chemical strain, as well
as from the limitations of common characterization tech-
niques [2, 10–12]. There is a wide consensus on the gen-
eral shape of the low-temperature part of the hydrogen
phase diagram below 250 GPa, which comprises phases I
to IV, but only the crystal structure of phase I has been
experimentally fully resolved, with several available re-
strictions on the possible structure of phases II and III.
Molecular solid hydrogen is expected to undergo the IM
transition at extreme pressure, and indirect experimental
evidence suggests that this does not occur before reach-
ing at least 450 GPa at zero temperature [6]. Recent
experiments reported the transition of phase III to a non-
metallic molecular phase at 350 GPa and, furthermore,
the transition to an atomic metal at 495 GPa [13, 14].
However, these claims have been disputed and no gen-
eral consensus has yet been reached on the matter [15].

On the modeling side, the major obstacles are suffi-
cient exploration of the configuration space, the accuracy
of electronic-structure methods, and the effect of zero-
point motion (ZPM). Density-functional theory (DFT)
and quantum Monte–Carlo (QMC) calculations proved
to be the two most successful methods to account for
the electronic energy in solid hydrogen [16–20], with the
former often serving for the candidate structure search
because of its high computational efficiency, and the lat-
ter for more reliable estimates of the stability of differ-
ent phases because of its ability to capture many-body
electronic correlation. The common thread in compar-
isons of DFT and QMC calculations is their different
prediction of the progression with pressure from phase
III to the conjectured metallic atomic Cs(IV) phase (not
to be confused with phase IV). Whereas QMC predicts
the transition via a single Cmca-12 phase, DFT cal-
culations, regardless whether corrected for pairwise van
der Waals (vdW) interactions and ZPM, suggest unam-
biguously that Cmca-12 is first followed by a semimetal-
lic molecular Cmca-4 phase before the Cs(IV) phase is
reached [17–19]. The DFT results are in contradiction
not only with QMC, but also with experiment, which
suggests that there is at most one additional transition
between phase III and the IM transition, and that all po-
tential molecular phases preceding the IM transition are
nonmetallic. In this light, it is crucial to understand how
many-body electronic correlations and their response to
pressure depend on the metallic or insulating nature of
hydrogen solid phases.
In this contribution, we uncover the essential role of

nonlocal electron correlations in the relative stability of
high-pressure hydrogen phases, and demonstrate that
DFT corrected for these correlations gives predictions
in agreement with QMC simulations. To this end, we
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FIG. 1: Pressure–temperature phase diagram of solid hydro-
gen as calculated with the PBE+MBD method. The dotted
lines indicate the uncertainty in the phase boundaries.

use the many-body dispersion (MBD) method [21, 22],
which is able to capture these nonlocal correlations at
much lower computational cost than QMC, while pro-
viding a simple enough model that is amenable to fur-
ther analysis and interpretation. In contrary to the con-
ventional assumption that the exponential screening of
metallic systems with interelectronic distance generates
localized many-body electronic correlations, we find that
the anisotropy of electronic response of hydrogen solids
under pressure leads to longer-ranged many-body effects
in metallic phases relative to insulating ones. This leads
to different nonlocal electron correlations between metal-
lic phases and insulating phases of hydrogen solids at
pressure as high as 500 GPa, reordering their relative
stability, and thus qualitatively changing the phase di-
agram. We attribute the difficulty in the estimation of
the electronic energy of high-pressure hydrogen phases to
the nontrivial interplay between the mean-field, many-
body, and collective character of the nonlocal electronic
fluctuations. In insulators and semiconductors, any non-
local fluctuations stem solely from many-body vdW in-
teractions, while in normal metals the electronic interac-
tions can be separated into a local mean-field description
and collective nonlocal fluctuations—plasmons [23]. In
the high-pressure hydrogen phases, however, the bound-
ary between vdW and plasmonic fluctuations becomes
less clear, which makes both semilocal DFT and pairwise
vdW methods insufficient for their description. Our re-
sults suggest that the MBD model is able to effectively
capture this unusual range of nonlocal fluctuations at
least on the energetic level, but more work will be re-
quired for full understanding of the detailed electronic
structure.

We start by calculating the pressure–temperature
phase-diagram of solid hydrogen with the exchange–

correlation functional of Perdew, Burke, and Ernzer-
hof [24] augmented with MBD method (PBE+MBD)
within the harmonic approximation (Fig. 1). The gen-
eral order of individual phases with respect to pres-
sure and temperature agrees well with the experimen-
tally obtained phase diagrams [14], which has been so far
unattainable for DFT-based approaches. In particular,
PBE+MBD predicts a single phase between the molecu-
lar phase III and the metallic atomic Cs(IV) phase. In
what follows, we compare the predictions of DFT+MBD
to other DFT+vdW approaches, and analyze the theo-
retical reasons for the observed differences in detail.

We evaluate the relative stabilities of hydrogen solid
phases with different DFT+vdW methods, focusing on
molecular C2/c-24 (phase III), Cmca-12, and Cmca-
4, and atomic metallic Cs(IV) [Fig. 2(a)], with two
other structures corresponding to phases II and IV
shown in Fig. S1 in Supplemental Materials (SM).
The PBE+MBD method predicts the transition C2/c-
24→Cmca-12→Cs(IV), indicating that the metallic
Cmca-4 is never energetically stable with respect to the
insulating Cmca-12, in agreement with QMC calcula-
tions and circumstantial experimental evidence [13, 14]
[Fig. 2(b)]. In contrast, the bare PBE functional as
well as two pairwise vdW methods, PBE+TS [25] and
PBE+D2 [26] (see Methods in SM), consistently predict
that the metallic Cmca-4 is energetically preferred over
Cmca-12 in a certain range of pressures preceding the
IM transition. Using a three-body correction to the pair-
wise vdW interactions, PBE+D3 [27] eliminates Cmca-4,
but at the price of eliminating also Cmca-12 and shifting
the IM transition to unrealistically low pressure. Since
PBE is exact in the high-density limit, it is in general
assumed to be suitable for high-pressure systems, and
indeed, pairwise vdW interactions seem relatively negli-
gible. But our results demonstrate that the long-range
many-body correlations are in fact essential for the rela-
tive stability of hydrogen solids, and accounting for them
effectively brings the predictive power of semilocal DFT
up to par with QMC.

We have further investigated the effect of the self-
interaction error (SIE) and of the ZPM on the phase-
diagram predictions. The former can be largely mitigated
by using the functional of Heyd, Scuseria, and Ernzerhof
(HSE) [28] instead of PBE, which increases the pressure
estimates by 50 and 100 GPa for the C2/c-24→Cmca-
12 and Cmca-12→Cs(IV) transitions, respectively. We
treat the ZPM in the harmonic approximation (see Fig.
S2 in SM), and find that it narrows the window of stabil-
ity of Cmca-12 on both ends. Most importantly, neither
the SIE nor ZPM affect the phase-diagram predictions
qualitatively, in the sense that the semimetallic Cmca-
4 does not become stable at any point. Quantitatively,
the transition pressures become only more accurate by
accounting for the SIE and ZPM with respect to the ex-
perimentally conjectured values.
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FIG. 2: Phase-transition pressure of hydrogen solids and corresponding energetics and geometric/electronic structures. (a)
Crystal structures of the four hydrogen phases viewed perpendicular to (top) and along (bottom) the layers. (b) Transition
pressure between the four hydrogen phases as predicted by different theoretical methods along with experimental results. (c)
Inter- and intralayer MBD binding energy in Cmca-12 and Cmca-4 relative to the corresponding part in C2/c-24. (d) Schematic
illustration of several representative (1st, 5th, and 6th) low-energy collective MBD fluctuations for C2/c-24, Cmca-12, and
Cmca-4 at 400 GPa. (e) Electron density difference between a hydrogen solid and a superposition of noninteracting hydrogen
molecules. Red/blue denotes accumulation/depletion of electron density due to intermolecular interactions.

The contribution of the nonlocal correlations can be
decomposed according to the present binding patterns.
All three studied molecular phases have a layered crystal
structure, and the largest contribution to the absolute
binding energies comes from inter layer interactions. But
analysis of the binding energy reveals that it is the dif-
ference in the intralayer MBD energy between different
phases that destabilizes the Cmca-4 phase with respect
to the two insulating molecular phases [Fig. 2(c)]. These
effects can be further understood based on the analysis of
the MBD Hamiltonian wave function, which is presented
below.

MBD describes vdW energy in terms of collective
charge-density fluctuation modes, which range from fluc-
tuations extended over the whole system and resembling
molecular dipoles or higher multipoles [29], to wave-
like dipole fluctuations in low-dimensional nanomateri-
als [30]. This picture is in stark contrast to the standard
London dispersion, in which all fluctuations are localized
on individual atoms and correlated in a pairwise fashion.
All three molecular hydrogen phases considered here have
wave-like dipole fluctuations as the lowest-energy modes
[Fig. 2(d)]. Interestingly, the fluctuations are preferen-
tially in-plane in the insulating phases, but out-of-plane
in the semimetallic phase. This observation is aligned
with the difference in the inter- and intralayer binding en-

ergies between the three phases [Fig. 2(c)]. Accordingly,
there is a difference in the electron density polarization
due to the intermolecular interactions between the insu-
lating and semimetallic phases [Fig. 2(e)]. In the insulat-
ing phases, the electron density accumulates between the
molecules within each layer with increasing pressure. In
the semimetallic phase, on the other hand, the density is
channeled into the interlayer space with increasing pres-
sure. This indicates that the layered nature of the two
insulating phases is like that of graphite and differs sig-
nificantly from that of the molecular semimetallic phase.

To better understand the effect of the collective fluc-
tuations on the stability of the solid hydrogen phases,
we compare the behavior of binding energies and C6

coefficients between the pairwise TS model and MBD
(see Methods in SM for details). The many-body ef-
fects can induce both polarization and depolarization
depending on the dimensionality and topology of the
system—it usually enhances the polarizability of low-
dimensional nanomaterials but depolarizes bulk com-
pounds. The difference in the TS energy between differ-
ent phases depends only weakly on pressure [Fig. 3(a)].
In contrast, the difference in the MBD energy ranges
from 2 to 20meV/atom and depends strongly on pres-
sure [Fig. 3(b)], significantly altering the relative stabil-
ity of hydrogen solids. Partially responsible for this dif-
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FIG. 3: Differences in vdW energy of hydrogen solids and
in the corresponding C6 coefficient and isotropic relative per-
mittivity. (a,b) Contribution to enthalpy from the TS and
MBD models relative to C2/c-24. (c) C6 coefficients (a.u.) of
a hydrogen atom in Cmca-12 as calculated by the pairwise
TS model and the many-body self-consistent screening (SCS)
equation [21, 22, 31]. (d) Static isotropic relative permittivity
of hydrogen phases.

ference is the dependence of the C6 coefficients of the
hydrogen atoms on atomic volume [Fig. 3(c)]. Whereas
this is strictly linear by construction in the case of TS,
the dependence is significantly stronger at high pres-
sures (low volumes, see Fig. S3 in SM) in the case of
MBD [21, 22, 31]. Finally, the difference in the MBD
energy between the phases can be directly attributed to
the metallicity of a given phase. With increasing pres-
sure, the MBD energy difference between the insulating
Cmca-12 and C2/c-24 is negligible (below 3meV/atom),
and that between the semimetallic Cmca-4 and Cs(IV)
remains in a narrow range, especially at 300–500GPa
(∼15meV/atom). In contrast, the difference between
these two groups depends strongly on pressure. This dif-
ference in stability can be mapped directly to the differ-
ence in the nature of the vdW many-body fluctuations
in the different phases.

Although the long-range dipole fluctuations cannot be
directly associated with the electronic plasmons, they do
capture the underlying long-range order in the electronic
motion [29]. An effective tool to compare the nature
of the fluctuations between different crystal structures is
the density of states (DOS) of the coupled oscillators. In
particular, the DOS of the coupled oscillations has sub-
stantially narrower dispersion in the metallic phases, sig-
nifying fluctuations that are dominated by longer-ranged
interactions that are independent of local crystal geom-
etry (see Fig. SX in SM). In contrast, the insulating
phases have a wider and more structured DOS, which
is governed by the relative positions of the neighboring
molecules in the crystal. The longer-ranged many-body

FIG. 4: Anisotropic relative permittivity of different hydrogen
phases as a function of pressure. The results are calculated
with the MBD model. (a)-(d) denote the different phases.
The Cartesian axes are aligned with the lattice vectors.

effects destabilize metallic Cmca-4 with respect to insu-
lating Cmca-12 and C2/c-24, in stark contrast with the
conventional wisdom that metallic systems possess local-
ized many-body electronic correlations because of expo-
nential screening with interelectronic distance. This is
induced by the anisotropy of electronic response of hy-
drogen solids under pressure as shown below.

While the MBD fluctuation modes are useful for un-
derstanding the vdW binding, they exist only within the
model and are not directly measurable. However, the
anisotropy in the modes [Fig. 2(d)] should directly trans-
late into anisotropy in observable quantities. To demon-
strate this, we calculate the relative permittivity of solid
phases of hydrogen as a function of pressure [Fig. 3(d)
and 4, see Methods in SM for details]. Whereas the dif-
ference in the isotropic permittivity between phases is
merely qualitative, the difference in anisotropy is quan-
titative. The strong in-plane fluctuation modes of the
molecular insulating phases translate into large in-plane
and small out-of-plane permittivity, especially at large
pressure. In contrast, the difference in permittivity be-
tween different directions remains constant across all
pressures for the molecular semimetallic phase, in line
with both in-plane and out-of-plane fluctuation modes
being present at low energies. In the metallic Cs(IV)
phase, the relationship is reversed, and it is the out-of-
plane direction that is dominantly polarizable.

Apart from the theoretical motivation, relative per-
mittivity can be readily measured, and thus serve as an
indicator for experimental characterization of the solid
phases. The MBD results obtained here for Cmca-12
at 100–200GPa agree well with the results from Bethe–
Salpeter equation and GW approximation [32, 33] (see
Table SI in SM). Our calculations suggest that the IM
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transition is associated with a prominent change in the
anisotropy of the relative permittivity, going from two
strongly polarizable axes to a single strongly polarizable
axis. The calculated static relative permittivity of the
Cs(IV) phase is ∼100 at 450–500GPa, leading to the re-
flectance of 0.90, which is consistent with the experimen-
tal values of 0.90±0.05 at 495±13GPa [14]. Our results
thus suggest that Cs(IV) is the structure of the atomic
metallic hydrogen observed experimentally.
Our calculations demonstrate that the long-range

many-body vdW interactions are essential for the correct
description of phase behavior of solid hydrogen. Using
a collective charge-density fluctuation model, we find
evidence that metallic hydrogen phases surprisingly
exhibit longer-ranged many-body effects with respect to
insulating hydrogen ones, consequently determining the
mechanical stability and response to pressure of solid
hydrogen phases. The HSE+MBD approach coupled
with quasi-harmonic ZPM gives stability predictions in
agreement with the much more costly QMC calculations
and available experimental results. Moreover, the
anisotropy of the relative permittivity as predicted
by MBD could serve as an experimentally available
descriptor of different solid phases of hydrogen.
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