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Obtaining accurate ground and low-lying excited states of electronic systems is crucial in a mul-
titude of important applications. One ab initio method for solving the Schrödinger equation that
scales favorably for large systems is variational quantum Monte Carlo (QMC). The recently intro-
duced deep QMC approach uses ansatzes represented by deep neural networks and generates nearly
exact ground-state solutions for molecules containing up to a few dozen electrons, with the potential
to scale to much larger systems where other highly accurate methods are not feasible. In this paper,
we extend one such ansatz (PauliNet) to compute electronic excited states. We demonstrate our
method on various small atoms and molecules and consistently achieve high accuracy for low-lying
states. To highlight the method’s potential, we compute the first excited state of the much larger
benzene molecule, as well as the conical intersection of ethylene, with PauliNet matching results of
more expensive high-level methods.

I. INTRODUCTION

The fundamental challenge of quantum chemistry,
solid-state physics and many areas of computational ma-
terials science is to obtain solutions to the electronic
Schrödinger equation for a given system, which in prin-
ciple provide complete access to its chemical properties.
The ground and low-lying excited states typically deter-
mine the behavior of a system and are therefore of the
most interest in many applications. Understanding and
being able to describe excited-state processes [1], includ-
ing a wide variety of important spectroscopy methods
such as fluorescence, photoionization and optical absorp-
tion of molecules and solids, is key to the successful design
of new materials.

Unfortunately, the Schrödinger equation cannot be
solved exactly except in the simplest cases, such as one-
dimensional toy systems or a single hydrogen atom. Ac-
cordingly, many approximate numerical methods have
been developed which provide solutions at varying de-
grees of accuracy. Time-dependent density functional
theory [2, 3] (TDDFT) is the most popular method due
to its computational efficiency, but has well known limi-
tations [4–9]. Higher-accuracy methods have a computa-
tional cost that scales rapidly with system size — the well
established full configuration interaction [10] (FCI) and
coupled cluster [11] (CC) techniques scale ∼ O(exp(N))
[12] and ∼ O(N5−10) [13] respectively, where N is the
number of electrons, thereby severely limiting their prac-
tical use. There is thus a huge need for ab initio methods
that scale more favorably with system size, allowing the
modeling of practically relevant molecules and materials.
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Quantum Monte Carlo (QMC) techniques offer a
route forward with their favorable scaling (O(N3−4))
and therefore dominate high-accuracy calculations where
other methods are too expensive [14, 15]. A state-
of-the-art QMC calculation typically involves the con-
struction of a multi-determinant baseline wavefunction
through standard electronic-structure methods, which is
augmented with a Jastrow factor to efficiently incorpo-
rate electron correlation, and then optimized through
variational QMC (VMC) to obtain a trial wavefunc-
tion. This is then used within fixed-node diffusion QMC
(DMC) to obtain a final electronic energy. The fixed-
node approximation is used to avoid exponential scaling,
with the drawback that the nodal surface of the trial
wavefunction cannot be modified, which limits the accu-
racy of the DMC result [16]. A more expressive baseline
wavefunction can improve upon this but traditional DMC
often needs thousands to hundreds of thousands of deter-
minants to reach convergence [17]. Additionally, DMC
only provides the final energy, restricting the calculation
of other electronic properties [18]. Both of these limi-
tations can, in principle, be resolved at the VMC level,
with its accuracy constrained only by the flexibility of
the trainable wavefunction ansatz. So far, these tech-
niques have mostly been developed for ground-state cal-
culations, with different extensions proposed to address
excited states [14, 19–28].

Recently, the new ab initio approach of deep VMC
methods has been introduced [29–32] and subsequently
further extended and improved [33–35]. In particular,
PauliNet [29] and FermiNet [30] were the first methods
to demonstrate that highly accurate ground-state results
for molecules could be obtained using deep VMC with
a lower computational complexity and using orders of
magnitude less Slater determinants typically employed
in other methods that achieve similar accuracy.

In the same spirit as Carleo and Troyer proposed for
optimizing quantum states in lattice models [36], VMC
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is used in order to train a neural network model that
represents the many-body wavefunction in an unsuper-
vised fashion, i.e. in contrast to other quantum machine
learning approaches the only input to the method is the
Hamiltonian, and training data are generated on the fly
by sampling from the current wavefunction model and
minimizing the variational energy. In both PauliNet and
FermiNet deep antisymmetric neural networks are used
to represent the fermionic wavefunction in the real space
of electron coordinates.

Recently, there has been much interest in develop-
ing deep learning methods for excited states [37]. In this
paper, we extend PauliNet towards the ab initio com-
putation of electronic excited states. The input is again
only the Hamiltonian of the quantum system. By em-
ploying a simple energy minimization and numerical or-
thogonalization procedure, we are able to obtain the low-
est excited-state wavefunctions of a given system. The
excited-state optimization makes use of a penalty method
that minimizes the overlap between the n-th excited state
and the lower-lying states in the spectrum. Optimization
methods that introduce additional constraints have been
used in the context of VMC before [28] and provide a
simple way to obtain orthogonal states without explicit
enforcement in the wavefunction ansatzes. Combining
these techniques with the expressiveness of neural net-
work ansatzes yields highly accurate approximations to
excited states with direct access to the wavefunctions for
the evaluation of electronic observables. Neural network-
based methods have targeted low-lying excited states of
one-dimensional lattice models [27], but have not been
applied to first-principles systems.

We demonstrate our method on a variety of small-
and medium-sized molecules, where we consistently
achieve highly accurate total energies, outperforming tra-
ditional quantum chemistry methods. We also compute
excitation energies, transition dipole moments and os-
cillator strengths, the main ground-to-excited transition
properties, with the latter two known to be more sensitive
to errors in the underlying wavefunctions than energies.
In all test systems we find PauliNet closely matches high-
order CC and experimental results. Next, we show that
our method can be applied in a straightforward manner
to much larger molecules, using the example of benzene
where we match significantly more expensive high-level
electronic-structure methods. Finally, we demonstrate
that PauliNet can be used to compute excited-state po-
tential energy surfaces by modeling an avoided cross-
ing and conical intersection of ethylene, a highly multi-
reference problem.

II. THEORY AND METHODS

A. PauliNet ansatz

At the heart of our approach is the PauliNet ansatz,
introduced in [29] and further refined in [38], a multi-

determinant Slater-Jastrow-backflow type trial wave-
function which is parametrized by highly expressive deep
neural networks:

ψθ(r) = eγ(r)+Jθ(r)
∑
p
cp det[ϕ̃↑θ,µpi

(r)] det[ϕ̃↓θ,µpi
(r)],

(1)

ϕ̃θ,µi(r) = ϕµ(ri)f
(m)
θ,µi(r) + f

(a)
θ,µi(r), (2)

where r = (r1, ..., rN ) is the 3N -dimensional real space
of electron coordinates. The structure of our ansatz en-
sures that the correct physics is encoded: the wavefunc-
tion obeys exact asymptotic behavior through the fixed
electronic cusps γ, and is antisymmetric with respect to
the exchange of like-spin electrons through the use of
generalized Slater determinants, guaranteeing the Pauli
exclusion principle is obeyed.

The expressiveness of PauliNet is contained in
the Jastrow factor Jθ and backflow fθ, which intro-
duce many-body correlation, and are both represented
through deep neural networks (denoted by trainable pa-
rameters θ). Jθ and fθ are constructed in ways that
preserve the antisymmetry of the fermionic wavefunction
with respect to exchanging like-spin electrons, as well as
its cusp behavior. The Jastrow factor is an exchange-
symmetric function, and captures complex correlation
effects through augmenting the Slater-determinant base-
line, but is incapable of modifying the nodal surface of
the determinant expansion. Changes to the nodal sur-
face are possible through the backflow, which acts on the
single-electron orbitals ϕµ directly, transforming them
into permutation-equivariant many-electron orbitals ϕ̃µ.
fθ is split into multiplicative (m) and additive (a) compo-
nents (Eq. (2)), and is designed to be equivariant under
the exchange of like-spin electrons.

B. Ground-state optimization

Like traditional VMC methods, PauliNet is based
on the variational principle, which guarantees that the
energy expectation value of a trial wavefunction ψθ is an
upper bound to the true ground-state energy:

E0 = min
ψ
〈ψ|Ĥ|ψ〉 ≤ min

θ
〈ψθ|Ĥ|ψθ〉. (3)

For a given system, a standard quantum chemistry
method (Hartree-Fock (HF) for a single determinant;
complete active space self-consistent field (CASSCF) for
multiple determinants) is performed, with the solution
supplemented by the analytically known cusp conditions,
thus producing a reasonable baseline wavefunction. We
then optimize the PauliNet ansatz by minimizing the to-
tal electronic energy (serving directly as the loss), follow-
ing the standard VMC trick of evaluating it as an expec-
tation value of the local energy, Eloc(r) = Ĥψ(r)/ψ(r),
over the probability distribution |ψθ|2:

L(θ) = Er∼|ψθ|2
[
Eloc[ψθ](r)

]
. (4)
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This means that, in practice, we alternate between sam-
pling electron positions generated using a Langevin al-
gorithm with the probability of the trial wavefunction
serving as the target distribution, and optimizing the
trial wavefunction parameters using stochastic gradient
descent. For further details, see Ref. [29].

C. Computing excited states

We now introduce the central idea of this paper: a
deep VMC method to compute the ground and low-lying
excited states of a given electronic system. While we em-
ploy PauliNet to represent the individual wavefunctions,
the method can also employ FermiNet or other real-
space wavefunction representations with suitable modi-
fications.

In a similar spirit to the ground-state optimization
process, we first obtain a reasonable baseline for each
state by performing a minimal state-averaged CASSCF
calculation. This optimizes the energy average for all
states in question and yields a single set of orbitals to
construct each multi-determinant wavefunction, which
are then supplemented by the analytically known cusp
conditions. We fix the number of determinants in our
ansatz by cutting off the CASSCF expansion based on
the absolute values of their determinant coefficients. The
choice of the CASSCF baseline ensures that the PauliNet
ansatzes for the different excited states are close to or-
thogonal upon initialization. In contrast to the ground-
state calculation, the optimization of excited states re-
quires a more nuanced choice of the active space. In
principle we must ensure that the solutions contain de-
terminants with orbitals of the necessary rotational sym-
metries (the Jastrow factor and backflow correction are
rotationally-symmetric modifications of the orbitals) and
spin configurations (the choice of the number of spin-up
and spin-down electrons does impose restrictions on the
states that may be attained by our ansatz). For most sys-
tems studied in this paper a generic choice of the active
space was sufficient (see Supplementary Information Ta-
ble VIII) and we have not studied the dependence on the
CAS initialization in more depth. As shown in previous
studies the quality of the orbitals has only a minor ef-
fect on the training and does not change the final energy
[38]. If, however, the initialization is not accounted for
and the baseline solutions provide a qualitatively wrong
spectrum of excited states our ansatzes may be trapped
in local minima and miss intermediate excited states (see
Fig. 2), even though we keep the Slater-determinant coef-
ficients cp and linear coefficients cµk of the single-electron
orbitals ϕµ(ri) =

∑
k cµkφk(ri) trainable.

Our objective is to calculate the lowest n eigenstates
of a given system, that is, find the set of orthogonal
states that minimizes the energy expectation value. We
approach this challenge by introducing a penalty term
to the energy loss function (Eq. (4)) and optimizing the

joint loss for n PauliNet instances:

L(θ) =
∑
i

Ei
[
Eloc[ψθ,i](r)

]
︸ ︷︷ ︸

energy minimization

+ α
∑
i>j

(
1

1− |Sij |
− 1

)
︸ ︷︷ ︸

overlap penalty

,

(5)
where Ei = Er∼|ψθ,i|2 and Sij is the pairwise overlap be-
tween states i and j. The functional form of the overlap
penalty is chosen to diverge when two states collapse and
behave linearly when states are close to orthogonal (see
Methods for details). This allows states to overlap during
the optimization procedure, while preventing their col-
lapse and eventually driving them to orthogonality when
they have settled in a local minimum of the energy. The
hyperparameter α weights the two loss terms and can be
increased throughout the training to strengthen the or-
thogonality condition when approaching the final wave-
functions. For a sufficiently large α the true minimum of
the loss function corresponds to the sum of the energies
of the lowest lying excited states with these states having
no overlap. Thus, optimizing the penalized loss function
(Eq. (5)) leads to an unbiased convergence towards the
lowest lying excited states (see Methods). In practice
a small α is typically sufficient, making a robust choice
possible.

To stabilize the training and reduce the computa-
tional cost we detach gradients in such a way that we
only consider the overlap with the lower-lying states re-
spectively, that is, the ground state is subject to uncon-
strained energy minimization and the n-th excited state
introduces n pairwise penalty terms. We compute the
overlap of the unnormalized states i and j as the geo-
metric mean of the two Monte Carlo estimates, obtained
over distributions |ψθ,i|2 and |ψθ,j |2, respectively:

Sij = sgn

(
Ei
[
ψθ,j(r)

ψθ,i(r)

])
×
√
Ei
[
ψθ,j(r)

ψθ,i(r)

]
Ej
[
ψθ,i(r)

ψθ,j(r)

]
.

(6)
The sign of the overlap can be obtained from either of
the two estimators, which match in the limit of infinite
sampling. If the overlap is close to zero and the signs
of the two estimates differ due to statistical noise of the
sampling, we consider the states to be orthogonal. Sim-
ilar to the energy loss, the gradient [39] of the pairwise
overlap can be formulated such that it depends on the
first derivative of the log wavefunction with respect to
the parameters only (see Methods for details).

Finally, we note that different states may be modeled
at different levels of quality, which can lead to erroneous
excitation energies. In order to improve the error can-
cellation of our ansatzes we employ a variance-matching
technique. As the variance of the energy σ2 can be con-
sidered a metric of how close a wavefunction is to a true
eigenstate, variance-matching procedures can be useful
tools [23, 40, 41]. Here, we utilize a simple scheme: for
single-state quantities such as total energies, we evaluate
all wavefunctions at the end of training. For multi-state
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quantities, such as excitation energies or transition dipole
moments, we match states of a similar variance. That is,
if final ψθ,i has a lower variance than final ψθ,j , we take
ψθ,i at an earlier point in training. This simply involves
computing σ2 of the training energies and applying ex-
ponential moving average at each iteration to monitor
convergence (see Methods for details). We find this pro-
cedure typically improves the final results.

III. RESULTS

A. Nearly exact solutions for small atoms and
molecules

To demonstrate our method we start by applying it
to a range of small atoms and molecules. We optimize
the lowest lying excited states and compute their verti-
cal excitation energies for the ground-state equilibrium
geometry (see Supplementary Information Table I), with
each PauliNet wavefunction containing a maximum of 10
determinants. In all systems we obtain highly accurate
total energies and estimates of the first few excitation
energies competitive with high-accuracy quantum chem-
istry methods.
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FIG. 1. Deep VMC obtains highly accurate excited
states for single elements. PauliNet results for the ex-
citation energies, with (red) and without (yellow) variance
matching, are compared to the theoretical best estimates
(TBE) taken from the NIST database [42]. Multiple PauliNet
ansatzes with identical energies correspond to orthogonal de-
generate states. For the TBE we have depicted four excita-
tions per atom, taking account of the degeneracies. For all
atoms we find the first excited state with high accuracy. For
B, C and O the ground state is threefold degenerate. For these
systems we choose one of the three states to compute exci-
tation energies, resulting in transitions with a relative energy
of zero. For Li and Be a further excitation energy is found.
While we obtain the second excited state for Be, in Li we
miss out intermediate states and instead find the transition
from the ground state to the 2D state. This can be related
to the generic CASSCF initialization of the ansatzes. (The
numerical data can be found in Supplementary Information
Table II.)

In Fig. 1 the excitation energies of the lowest states

are shown for several atoms. For all the atoms the exci-
tation energies are obtained within 4 mHa of the theoret-
ical best estimates (TBE) [42]. Due to the high degree of
symmetry the atoms exhibit degeneracies, that is, mul-
tiple orthogonal states can be found with the same en-
ergy. Being subject to the orthogonalization constraint,
PauliNet approximates all orthogonal states of an energy
level individually, which is observed by attaining multi-
ple results at the same energy level. The multiplicity of
the exact solution can be obtained theoretically by con-
sidering the electronic configurations of the atoms and is
reproduced within our experiments.

We then compute a larger number of excited states
for LiH, BeH and Be. In each experiment we optimize
eight ansatzes in parallel. In Fig. 2 we illustrate the train-
ing process by plotting the convergence of the total en-
ergies and excitation energies. Additionally, we plot the
training estimates of the pairwise overlaps of the wave-
functions, which remain small throughout the optimiza-
tion process. We confirm that the final overlaps are near-
zero by exhaustively sampling the trained wavefunctions
and evaluating based on well-converged Monte Carlo esti-
mates (see Supplementary Information Table VI). Based
on the degeneracies we find a total of five (LiH), four
(BeH) and three (Be) distinct excitation energies, respec-
tively. The excitation energies match those from refer-
ence values, and in particular we find that for all systems
studied here we reliably obtain the first excited state,
and apart from one case also the second excited state.
However, especially for clusters of higher-lying excited
states with similar energies, we typically do not find all
members of the cluster. In these cases, the states found
depend on the initialization of our ansatzes, as well as the
total number of states that are being sought. To give a
transparent picture of the capabilities of our method, in
this work we have refrained from optimizing the CASSCF
baseline in order to find all possible excitations.

B. Highly accurate wavefunctions: transition
dipole moments and oscillator strengths

Total energies and vertical excitation energies are the
primary focus when benchmarking excited-state meth-
ods as they are readily available from many theoretical
models and provide a good initial guess of a particular
method’s accuracy. However, they provide only a par-
tial characterization of the electronic states, and while
a method in question may give accurate energies, other
quantities of key importance may be inaccurate [46–48].

Transition dipole moments (TDM) and oscillator
strengths are two principal ground-to-excited transition
properties and are of great interest. TDMs determine
how polarized electromagnetic radiation will interact
with a system due to its distribution of charge, and there-
fore determine transition rates and probabilities of in-
duced state changes. In the electric dipole approxima-
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FIG. 2. Optimizing low-lying excited states for small molecules. Several excited states of LiH, BeH and Be are
approximated. The convergence of the total energies (upper row), excitation energies (middle row) and the pairwise overlaps
between the wavefunctions (bottom row) is shown. For degenerate states multiple ansatzes attain the same energy. Dotted
horizontal lines are excitation energies from FCI calculations and other highly accurate references [43][44][45][42]. Due to
the initialization from the CASSCF baseline the wavefunctions start with a small overlap, which is retained throughout the
optimization. (The numerical data can be found in Supplementary Information Table II (continued).)

tion, the TDM between two states i and j is given by

dij = 〈ψi|µ̂|ψj〉, (7)

where µ̂ =
∑
k qr̂k is the sum over the position operator

of each particle weighted by its charge, with q = −e
for electronic systems. We obtain the expectation value
by Monte Carlo sampling according to Eq. (15). While
the TDM is important for understanding a number of
processes, including optical spectra, it is a complex vector
quantity and not an experimental observable by itself.
The closely related oscillator strength is what is inferred
through experiment and is given by

fij =
2

3
∆Ed2ij , (8)

where ∆E is the excitation energy between states i and
j, and d2ij is the dipole strength. It is known that, in
addition to being more basis-set sensitive, dij and fij are
both highly dependent on the quality of the trial wave-
functions [49] and represent a more rigorous test for ab
initio methods than just energies.

Recently, transition energies and oscillator strengths
for a variety of small molecules have been computed using
high-order CC calculations, systematically extrapolating
to the complete basis set (CBS) limit, and comparing to
experimental results where possible, in order to supply a
comprehensive set of theoretical benchmarks [50, 51]. In
that spirit, we now use these results to benchmark the ac-
curacy of oscillator strengths computed using PauliNet.
Furthermore, we also compare to multi-reference CC
(MR-CC) results where possible [52]. We compute the
first few electronic states for five molecules (BH, CH+,

H2O, NH3, CO), such that we obtain the first non-zero
oscillator strength (within the dipole approximation) for
each. All calculations [53] are performed at the same
ground-state equilibrium geometries as Refs. [50, 51] (see
Supplementary Information Table I) and using the same
number of determinants (≤ 10) as in Section III A.

Our results for all systems are shown in Fig 3. First,
we compute the amount of correlation energy recovered in
the ground state, and find PauliNet matches high-order
CC methods (upper panel). Second, we compute the ex-
citation energy for each transition and find this to be
close to the TBE, on par with CC and much more con-
sistent than TDDFT where the accuracy depends on the
molecule and on the exact TDDFT method used (cen-
tral panel). Finally, we compare the oscillator strengths
(for the 0→ 2 transition) in the lower panel. Even high-
order methods such as CC and MR-CC can produce a
spectrum of results depending on the expansion and ba-
sis set used, with this exacerbated in cheaper methods
such as TDDFT (see the example of CO). In all sys-
tems, PauliNet compares well with experimental results,
demonstrating the quality of deep VMC wavefunctions
with just a minimal number of determinants.

C. Application to larger molecules

The previous two sections showed that we achieve
highly accurate results across a range of small systems.
While this is encouraging, traditional high-accuracy
methods that are better established are readily available
for such small systems. In this section, to demonstrate
the potential of excited PauliNet, we show that it can
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FIG. 3. Deep VMC obtains highly accurate excited-
state energies and wavefunctions for small molecules.
Upper panel: PauliNet recovers the same amount of correla-
tion energy as high-order CC methods [42]. (CH+: No better
reference energy to compare with.) Central panel: Lowest
triplet (0→1) and singlet (0→2) excitation energies obtained
using PauliNet (with (red) and without (yellow) variance
matching), CC and TDDFT, with the TBE given. (BH and
CH+ exhibit degeneracy for the triplet state; CC is CCSD or
higher, except for the triplet state of BH which includes CC2.)
Lower panel: Oscillator strengths computed for the 0→2 tran-
sitions. PauliNet compares well to experiment in all systems
and matches the accuracy of (MR-)CC results, demonstrat-
ing the quality of few-determinant PauliNet wavefunctions.
(We have omitted a factor of two linked to degeneracy in BH
and CO.) Refs: exact correlation energies [42, 54, 55]; exci-
tation energies from CC [50–52, 56–60], TDDFT [59–62] and
TBE [50, 51, 56, 63, 64]; oscillator strengths from (MR-)CC
[50–52, 65, 66], TDDFT [67] and experiment [68–72]. (The
numerical data can be found in Supplementary Information
Table III.)

be applied in a straightforward manner to significantly
larger molecules. For this objective, we choose the ex-
ample of the benzene molecule (upper panel of Fig. 4).
Studies of its electronic structure and other properties
are plentiful due to its importance in bio and organic
chemistry, and with 42 electrons all electron calculations
will be extremely demanding or even intractable for a
high-level description of its electronic states, depending
on the theory level used.

Using a slightly modified PauliNet ansatz with just
10 determinants, the same as in the much smaller sys-
tems, and slightly deeper neural networks (see Supple-
mentary Information Table VII.) we obtain very good
total energies for the ground state and first excited state
(upper left of Fig. 4). We note the better accuracy than
high-level CC calculations, with this signifying highly ac-
curate wavefunctions that can be used to compute other
observables, as demonstrated in the previous section.
The computed excitation energy is also shown (right of
Fig. 4), with PauliNet compared against several experi-
mental and theoretical results. The lower experimental
result [73] (dashed black line) quantifies an adiabatic ex-
citation energy, i.e. the energy difference between the
ground state and the excited state at the corresponding
relaxed geometries. This quantity is corrected to obtain
the vertical excitation energy [28] (solid black line), which
omits nuclear relaxation and vibrational effects. We find
this to be slightly underestimated by high-order methods
(CC, DMC), and slightly overestimated by PauliNet. In
other systems (central panel of Fig 3) we notice a similar
trend when comparing to the TBE.

PauliNet formally scales as O(N4) with number of
electrons N , and in practice we observe a scaling be-
havior O(N3) for the systems investigated so far, which
is related to quadratic scaling of the neural network
with an extra factor from evaluation of the local en-
ergy. As PauliNet is currently implemented in a research
code, which is not optimized for production purposes,
the computational time will have a large prefactor which
makes it computationally unfavorable to e.g. CC meth-
ods for small molecules. However, its very favorable scal-
ing in N compared to O(N5−10) of high-level electronic-
structure methods dominates for larger molecules, and
this is clearly visible in benzene. For instance, Ref. [74]
used several state-of-the-art methods to obtain accurate
benzene ground-state energies, with calculations run on
several CPU types in a highly parallel manner (see Sup-
porting Information of Ref. [74] for details). PauliNet was
run on a single RTX 3090 GPU at a fraction of the num-
ber of node hours. Although PauliNet is the computa-
tionally cheapest method in this comparison, it provides
a significantly better (variational) ground-state energy
than all methods (∼ 0.48 Ha lower). As all methods com-
pared in Fig. 4 provide similar excitation energies, these
cannot be used to group the methods into more or less
accurate, but overall this data indicates that PauliNet
and deep VMC methods in general have a very favor-
able cost/accuracy trade-off for molecules of the size of
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FIG. 4. Calculating the two lowest electronic states of
the benzene molecule. Inset: benzene structurea. Upper
left: Convergence of the total energies of the ground state
(red) and excited state (light red) with training. Total en-
ergies of the ground state from CCSD(T) in the frozen-core
approximation with the aug-cc-pVnZ basis set (n = D, T)
(dashed blue), and full CCSD(T) at the CBS limit (solid
blue) are shown [42]. Lower left: Convergence of the exci-
tation energy with training (with (red) and without (yellow)
variance matching). Right: Excitation energy computed us-
ing PauliNet, TDDFT [62], CC [75], DMC [28], CAS-PT ([76]
and calculations in openMolcas [77]) and Experiment [28, 73].
(The numerical data can be found in Supplementary Informa-
tion Table IV.)

a Reproduced from Wikipedia (credit to: Benjah-bmm27 / public
domain)

benzene and beyond.

D. Multi-reference application: conical
intersections

Molecular configurations that produce electronic
states with similar energies are fundamental in photo-
chemical applications. Such configurations can lead to
several states mixing, meaning they are all necessary for
an accurate description of a particular process. Coni-
cal intersections are produced when two states become
degenerate and require the computation of excited-state
potential energy surfaces. The modeling of energy sur-
faces near degeneracies is inherently multi-reference with

significant electronic correlation and is thus a challenging
application for electronic-structure methods.

As a final application of excited PauliNet, we com-
pute ground- and excited-state potential energies for
ethylene (H2C CH2) as a function of its torsion and
pyramidalization angles. Twisting around the C C bond
raises the energy of the ground state while lowering that
of the first-excited singlet state, giving rise to an avoided
crossing at a torsion angle τ of 90°. From this twisted
structure, the energy gap between the two states is fur-
ther reduced through the pyramidalization of one of the
CH2 groups, leading to a conical intersection. These po-
tential energy curves, whose modeling is often too chal-
lenging for single-reference methods [78–80], have been
characterized using multi-reference configuration interac-
tion (MR-CI) methods [81] which we use for comparison.

We choose the same ground-state (planar) geometry
as Ref. [81] (optimized using a small CAS and the aug-cc-
pVDZ basis set; see Supplementary Information Table I)
and find the excitation energy between the ground state
and first-excited singlet state to be within a few mHa of
the MR-CI results. As we vary τ , while keeping all other
geometric parameters fixed, we find the energy curves to
be well reproduced by PauliNet, with an avoided crossing
at τ = 90° (upper panel of Fig. 5; curves symmetric about
τ = 90°). Single-reference methods, such as TDDFT (see
figure), often overestimate the energy of the ground state
at τ = 90° (barrier) and produce an unphysical cusp.

Next, we take the same twisted structure (τ = 90°)
as Ref. [81] (optimized using a small CAS and the aug-
cc-pVDZ basis set; see Supplementary Information Ta-
ble I) and vary the pyramidalization angle φ, while keep-
ing all other geometric parameters fixed. While there is
a small discrepancy between PauliNet and the MR-CI
results (lower panel of Fig. 5), the trend of the energy
curves is well described, including the correct minimum
of the excited-state curve (∼ 70°) and the conical in-
tersection (PauliNet: φ ∼ 100°; MR-CI: φ ∼ 96°). We
note that many single-reference methods are unable to
even qualitatively describe the conical intersection, in-
stead predicting spurious features [80].

IV. CONCLUSION

We have introduced an approach to compute
highly accurate excited-state solutions of the electronic
Schrödinger equation for molecules by using deep neu-
ral networks that are trained in an unsupervised manner
with variational Monte Carlo. We have employed the
PauliNet architecture [29] to approximate the ground-
and excited-state wavefunctions, however other archi-
tectures such as FermiNet [30] or second quantization
approaches [31] could also be employed, with suitable
modifications. As our approach to find excited states
only constrains the excited-state wavefunctions, the abil-
ity to compute highly accurate and variational abso-
lute ground-state energies is unchanged. In addition,
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FIG. 5. Modeling a conical intersection of ethylene.
Upper panel: Total energies (relative to the ground state
of the planar geometry E0) of the ground state and first-
excited singlet state as a function of torsion angle τ , with
MR-CI [81] and TDDFT [79] results also plotted for com-
parison. TDDFT overestimates the barrier (ground state at
τ = 90°) and produces an unphysical cusp, while the MR-CI
results which predict an avoided crossing are well reproduced
by PauliNet. Lower panel: Same as above but as a function
of pyramidalization angle φ (τ = 90°), with the degeneracy
of the two states producing a conical intersection. The ar-
rows denote the conical intersection, with PauliNet (φ ∼ 100°)
closely matching the MR-CI result (φ ∼ 96°). Note: The ge-
ometric parameters (bond lengths and angles) vary slightly
between the torsion and pyramidalization experiments (see
Ref. [81]). (The numerical data can be found in Supplemen-
tary Information Table V)

we demonstrate for a number of small molecules con-
taining up to 42 electrons, that excited PauliNet can
reliably find the first excitation energies with an accu-
racy that is on par with high-level electronic-structure
methods, whereas cheaper methods such as TDDFT are
less consistent in approximating these energies. The ac-
curacy of the excited-state wavefunctions is underlined
by an accurate match of oscillator strengths, which de-
pend on the transition dipole moment, a quantity that
is more sensitive to the exact form of the wavefunction
than the energy. For benzene (42 electrons), PauliNet al-
ready requires significantly less computational time than
higher-order methods, and this advantage will only im-
prove for larger molecules. Formally, a single PauliNet
is an O(N4) method for N electrons, due to the compu-
tational cost of the Hartree-Fock or CASSCF baseline,

however in practice we see that the determinant com-
putation is the computational bottleneck for the system
sizes tested, and we therefore currently have empirically
an O(N3) dependency. In addition, for excited-state cal-
culations n PauliNet replicas are used which gives rise
to O(nN3) +O(n2N2), with the latter term arising from
the pairwise overlaps and having a much smaller prefac-
tor than the former.

Notably, almost identical excited PauliNet architec-
tures are used across the systems shown in this paper –
up to minor modifications such as the budget of Slater
determinants and the total number of excited states re-
quested, and a deeper network for benzene to adapt for
a potentially more complex wavefunction. Whereas a
skilled quantum chemist can usually tune and special-
ize an existing electronic-structure method to give very
high-accuracy results for a given molecule, our aim is the
exact opposite: to provide a method that, by leveraging
machine learning tools, is as automated as possible and
will work over a wide range of Hamiltonians provided.

By combining the present approach with recent and
ongoing extensions of PauliNet [34] and FermiNet [35]
that variationally compute entire potential energy sur-
faces, both highly accurate ground- and excited-state en-
ergy surfaces are now accessible with deep VMC meth-
ods. We have demonstrated this with the example of
ethylene where we model an avoided crossing and conical
intersection. Here, where single-reference methods often
fail, PauliNet performs well against multi-reference CI
results. Future work will investigate the application of
PauliNet to other interesting processes where molecular
dynamics interacts with excited states.

One of the limitations of the current approach is that
it appears difficult to reliably find all excited states up to
a given desired number, especially in cases where several
excited states have similar energies. This is a complex
problem which depends on the Hartree-Fock/CASSCF
initialization, on the total number of states requested,
on the learning algorithm and the expressiveness of the
architecture and will be studied in more detail elsewhere.
However, the first excited state could be reliably found
for all molecules studied here, and apart from one excep-
tion also the second excited state. This, in combination
with the high numerical accuracy and the favorable com-
putational cost, makes deep VMC a promising method
to compute both ground- and excited-state properties for
small- and medium-sized molecules with dozens or even
low hundreds of electrons.
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METHODS

Loss function and overlap penalty

There are a number of choices of possible loss func-
tions for the optimization of excited states in quantum
Monte Carlo [22, 28, 82]. In order to assess the feasi-
bility of excited-state optimization with deep neural net-
work ansatzes in variational Monte Carlo we conducted a
range of experiments with different types of optimization
objectives. Our empirical findings showed that employ-
ing a penalty method is the conceptually most straight-
forward approach and gives stable results when combin-
ing it with our implementation of PauliNet. Initially,
we started with an overlap penalty term similar to [28].
However, we found that our optimization could still col-
lapse even if we chose a sufficiently large prefactor (α)
and the training could not recover. We therefore switched
to an alternative penalty term (Eq. (5)) which diverges
upon a collapse of the states. The effect of our penalty
term can be illustrated by considering the loss for a two-
state system with the exact ground state |ψ0〉 and a lin-
ear combination of the ground and first excited state |ψ1〉
(see Fig. 6):

|ψε〉 =
√

1− ε|ψ1〉+
√
ε|ψ0〉. (9)

The overlap and the energy can be obtained as

〈ψ0|ψε〉 =
√
ε, 〈ψε|H|ψε〉 = (1− ε)E1 + εE0. (10)

In the vicinity of the orthogonal solution the Taylor ex-
pansion of the penalty term is

1

1− |S| − 1 = |S|+ |S|2 + |S|3 + ..., at |S| = 0, (11)

that is, the overlap penalty behaves linearly to first order.
This gives rise to a penalty that is locally stable for any
prefactor, lower bounded by the S2 penalty term and di-
verges if states collapse. For a large enough α parameter
the global optimum of the total loss is at zero overlap,
that is, the optimization method is incentivized to find
exactly orthogonal states without mixing. In practice we
have not observed a bias due to the non-linear nature of
the penalty when applied to sampled expectation values
of the overlap.

Gradient of the loss function

In order to differentiate the loss function we explicitly
formulate the gradient. We consider the general case of
a mixed observable:

Oij =
1

NiNj

∫
d3r ψθ,i(r)

[
Ôψθ,j(r)

]
, (12)

=
Ni
Nj

Ei
[
Ôψθ,j(r)

ψθ,i(r)

]
, (13)
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FIG. 6. Sketch of the loss function. This figure illustrates
the behavior of our loss function for a two-state system. The
ground state is kept fixed and the second state is considered to
be a linear combination of the ground state and first excited
state (Eq. (9)). The scales are to be understood in arbitrary
units, as they depend on the choice of the hyperparameters
and the energies of the system under investigation.

where Ni, Nj are the norms of the wavefunctions and
Ei = Er∼|ψθ,i|2 . By the property of Hermitian matrices,
Oij = Oji, we derive an expression that does not depend
on the wavefunction norms:

Oij =

√
Ni
Nj

Ei
[
Ôψθ,j(r)

ψθ,i(r)

]√
Nj
Ni

Ej
[
Ôψθ,i(r)

ψθ,j(r)

]
,

(14)

= sgn

(
Ei
[
Ôψθ,j(r)

ψθ,i(r)

])

×
√

Ei
[
Ôψθ,j(r)

ψθ,i(r)

]
Ej
[
Ôψθ,i(r)

ψθ,j(r)

]
. (15)

This expression reduces to the pairwise overlaps
(Eq. (6)) upon setting Ô = Id. The derivative of this
term can be expressed as

∂Oij =
1

Oij

{
(Ei
[(

Ôψθ,j(r)

ψθ,i(r)
− Ei

[
Ôψθ,j(r)

ψθ,i(r)

])
∂ ln |ψθ,i(r)|

]
× Ej

[
Ôψθ,i(r)

ψθ,j(r)

]
+ (i⇐⇒ j)

}
,

(16)

where (i⇐⇒ j) is an additional term with the two indices
interchanged.

By considering the Hamiltonian operator Ĥ and set-
ting i = j we recover the gradient of the energy loss [29]:

∂Eii = 2Ei
[(

Ĥψθ,i(r)

ψθ,i(r)
− Ei

[
Ĥψθ,i(r)

ψθ,i(r)

])
∂ ln |ψθ,i(r)|

]
.

(17)

Variance matching

As far as relative energies are concerned most compu-
tational chemistry methods rely heavily on cancellation
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FIG. 7. Sketch of the variance-matching procedure.
The excitation energy of the Benzene calculation at step 4000
is obtained for illustration purposes. The variance (lower
panel) of the excited state is higher than that of the ground
state, and is therefore matched with the variance of the
ground state at a previous iteration. The excitation energy
is computed by comparing the mean energies (upper panel)
at the respective iterations. This acts to reduce the excita-
tion energy and is found to improve the results in all of our
experiments.

of error. While quantum Monte Carlo methods using
neural network-based trial wavefunctions provide highly
accurate total energies, the flexibility of these ansatzes is
difficult to control which can lead to varying qualities of
approximations for different states. In order to account
for potential imbalances we utilize the variance of the
wavefunctions as a measure of the quality of the approx-
imation (zero-variance principle) and employ a variance-
matching scheme. Variance-matching techniques as well
as variance extrapolation have typically been applied by
optimizing a family of ansatzes and comparing variances
across the optimized wavefunctions [41]. Instead of train-
ing multiple ansatzes we checkpoint wavefunctions during
the training and compute excitation energies by rewind-
ing the ground state to match the variance of the excited
state as depicted in Fig. 7. The mean and variance of
each wavefunction are computed over the batch dimen-
sion at each step in training and smoothed with an ex-
ponential walking average. For the final estimation of
excitation energies the respective wavefunctions are then
sampled exhaustively as in the usual evaluation process.
While the variance matching hardly impacts the excita-
tion energies for small systems, for larger and harder to
optimize systems, such as benzene, it becomes increas-
ingly relevant.

Spin treatment

PauliNet encodes only the spatial part of the wave-
function and its like-spin antisymmetry explicitly [14],
while the spin part, which guarantees the opposite-spin
antisymmetry, is only implicit. Every spin-assigned spa-
tial ansatz such as PauliNet is always an eigenstate of Sz
with an eigenvalue of M = 1

2 (N↑ − N↓), but it may not

be an eigenstate of S2. The spatial part of eigenstates of
S2 is characterized by specific sets of permutational sym-
metries involving opposite-spin electrons [83]. PauliNet
does not enforce these symmetries but instead attempts
to learn them through the variational principle because
eigenstates of the Hamiltonian are also eigenstates of S2.
Therefore, we do not control in general for the spin of
the eigenstates found in the optimization procedure —
they are simply found in the order of increasing energy,
independent of spin. The spin of a found eigenstate can
be obtained in principle by Monte Carlo sampling [84].
Whether a particular spin state is found in practice may
be influenced by the spin of the CASSCF baseline wave-
function, which we therefore report in Supplementary
Information Table VIII. In special cases, we may wish
to target a specific spin state (e.g., see Sec. III D), and
for that we can take advantage of the orbital-assigned
backflow of PauliNet. Combined with the freezing of the
determinant coefficients, this ensures that PauliNet re-
mains in the same spin state as the CASSCF baseline
wavefunction.
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Appendix A: Geometries of test systems

All calculations presented in Sections III A – C of the main paper were done at the ground-state equilibrium
geometries. The geometries for all molecules are listed in Table I. For the ethylene structures presented in Section III
D, we list the planar (ground-state equilibrium) and twisted (τ = 90) geometries.

TABLE I. Ground-state equilibrium geometries of the test systems.

Molecule Atom Position (Å) Molecule Atom Position (Å)

LiH Li (0.000, 0.000, 0.000) BeH Be (0.000000, 0.000000, 0.000000)

H (1.595, 0.000, 0.000) H (1.326903, 0.000000, 0.000000)

BH B (0.000000, 0.000000, 0.000000) CH+ C (0.00000, 0.00000, 0.00000)

H (0.000000, 0.000000, 1.222874) H (1.13092, 0.00000, 0.00000)

H2O O (0.000000, 0.000000, -0.069903) CO C (0.000000, 0.000000, -0.661165)

H (0.000000, 0.757532, 0.518435) O (0.000000, 0.000000, 0.472379)

H (0.000000, -0.757532, 0.518435)

NH3 N (0.067759, -0.000000, 0.000000) C2H4 (planar) C (-0.675000, 0.000000, 0.000000)

H (-0.313823, 0.468746, -0.811891) C (0.675000, 0.000000, 0.000000)

H (-0.313823, -0.937491, -0.000000) H (-1.242900, 0.000000, -0.930370)

H (-0.313823, 0.468746, 0.811891) H (-1.242900, 0.000000, 0.930370)

H (1.242900, 0.000000, -0.930370)

H (1.242900, 0.000000, 0.930370)

C2H4 (twisted) C (-0.688500, 0.000000, 0.000000) C6H6 C (0.000000, 1.396792, 0.000000)

C (0.688500, 0.000000, 0.000000) C (0.000000, -1.396792, 0.000000)

H (-1.307207, 0.000000, -0.915547) C (1.209657, 0.698396, 0.000000)

H (-1.307207, 0.000000, 0.915547) C (-1.209657, -0.698396, 0.000000)

H (1.307207, -0.915547, 0.000000) C (-1.209657, 0.698396, 0.000000)

H (1.307207, 0.915547, 0.000000) C (1.209657, -0.698396, 0.000000)

H (0.000000, 2.484212, 0.000000)

H (2.151390, 1.242106, 0.000000)

H (-2.151390, -1.242106, 0.000000)

H (-2.151390, 1.242106, 0.000000)

H (2.151390, -1.242106, 0.000000)

H (0.000000, -2.484212, 0.000000)
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Appendix B: Energies for small atoms and molecules

We tabulate the total energies and vertical excitation energies that were obtained for the small systems, as
presented in Section III A of the main paper. These are listed in Table II.

TABLE II. Total energies and vertical excitation energies (both in Ha) for the small atoms in Section III A.

System En Correlation energy (%) ∆E ∆E (σ2 matching)

Li -7.47800(4) 99.9(1)a — —

-7.40998(5) — 0.06801(7) 0.06807(7)

-7.40988(7) — 0.06812(8) 0.06811(9)

-7.40977(7) — 0.06823(8) 0.06824(9)

-7.335(4) — 0.143(4) 0.143(4)

Be -14.66736(7) 100.0(1)a — —

-14.5663(6) — 0.1011(6) 0.1009(6)

-14.5664(1) — 0.1010(1) 0.1007(2)

-14.5664(1) — 0.1010(1) 0.1004(2)

-14.4710(2) — 0.1964(2) 0.1952(2)

B -24.6509(2) 97.6(1)a — —

-24.6506(2) — 0.0004(3) 0.0005(3)

-24.6498(2) — 0.0011(3) 0.0008(3)

-24.5206(2) — 0.1303(2) 0.1300(3)

-24.5202(2) — 0.1307(3) 0.1300(3)

C -37.8388(3) 96.0(2)a — —

-37.8388(2) — -0.0001(4) 0.0001(4)

-37.8378(2) — 0.0010(4) 0.0008(4)

-37.7918(2) — 0.0470(4) 0.0470(4)

-37.7911(3) — 0.0477(4) 0.0451(4)

N -54.5836(3) 97.0(2)a — —

-54.4911(4) — 0.0925(5) 0.0900(5)

-54.4885(4) — 0.0952(5) 0.0893(6)

-54.4874(4) — 0.0963(6) 0.0883(6)

-54.4861(4) — 0.0975(5) 0.0918(6)

O -75.0532(5) 94.6(2)a — —

-75.0506(5) — 0.0027(7) -0.0003(8)

-75.0519(5) — 0.0013(7) -0.0011(7)

-74.9763(6) — 0.0769(8) 0.0711(8)

-74.9771(6) — 0.0761(8) 0.0703(9)

a Exact energy and HF energy at the CBS limit [54]
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TABLE II (continued). Total energies and vertical excitation energies (both in Ha) for the many-state calculations in Section
III A.

System En Correlation energy (%) ∆E ∆E (σ2 matching)

LiH -8.0695(1) 98.9(1)a — —

-7.9497(1) — 0.1198(1) 0.1199(1)

-7.9348(1) — 0.1348(2) 0.1347(2)

-7.9112(1) — 0.1584(2) 0.1573(2)

-7.9114(1) — 0.1582(1) 0.1574(2)

-7.8978(1) — 0.1717(2) 0.1710(2)

-7.8977(1) — 0.1718(2) 0.1709(2)

-7.8549(1) — 0.2147(2) 0.2130(2)

BeH -15.2452(4) 98.3(4)a — —

-15.1516(2) — 0.0936(4) 0.0916(3)

-15.1507(2) — 0.0946(5) 0.0914(3)

-15.0286(3) — 0.2166(5) 0.2132(4)

-15.0259(2) — 0.2193(5) 0.2156(4)

-15.0249(2) — 0.2203(5) 0.2138(17)

-14.9951(4) — 0.2500(5) 0.2379(5)

-14.9528(3) — 0.2923(5) 0.2793(16)

Be -14.6667(1) 99.3(1)a — —

-14.5655(2) — 0.1012(2) 0.1011(2)

-14.5654(1) — 0.1013(2) 0.1007(2)

-14.5651(2) — 0.1016(2) 0.1009(3)

-14.4663(3) — 0.2004(4) 0.1967(10)

-14.4671(3) — 0.1996(3) 0.1976(5)

-14.4665(3) — 0.2002(3) 0.1982(5)

-14.3915(2) — 0.2752(2) 0.2732(4)

a Exact energy and HF energy at the CBS limit [54]
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Appendix C: Energies and oscillator strengths for intermediate systems

We tabulate the total energies, vertical excitation energies and oscillator strengths that were obtained for the
intermediate systems, as presented in Section III B of the main paper. These are listed in Table III.

TABLE III. Total energies (in Ha), vertical excitation energies (in Ha) and oscillator strengths (in au) for the systems in Section
III B.

Molecule En Correlation energy (%) ∆E ∆E (σ2 matching) f f (σ2 matching)

BH -25.2883(2) 99.5(1)a — — — —

-25.2362(2) — 0.0521(3) 0.0510(3) — —

-25.2356(2) — 0.0527(3) 0.0503(3) — —

-25.1765(2) — 0.1118(3) 0.1088(3) 0.0276(1) 0.0253(1)

CH+ -38.0863(2) — — — — —

-38.0385(2) — 0.0478(3) 0.0460(3) — —

-38.0375(3) — 0.0488(4) 0.0465(4) — —

-37.9664(3) — 0.1199(4) 0.1172(4) 0.00606(4) 0.00576(3)

H2O -76.4230(5) 95.9(1)b — — — —

-76.1499(6) — 0.2731(8) 0.2702(8) — —

-76.1342(6) — 0.2888(8) 0.2846(8) 0.0394(3) 0.0373(3)

NH3 -56.5533(3) 96.6(1)b — — — —

-56.3122(4) — 0.2411(5) 0.2391(6) — —

-56.2971(4) — 0.2562(5) 0.2533(6) 0.0630(4) 0.0732(5)

CO -113.3039(6) 95.9(1)b — — — —

-113.0618(7) — 0.2421(9) 0.2387(9) — —

-112.9765(7) — 0.3274(9) 0.3210(9) 0.1049(5) 0.1030(5)

a Exact energy [55] and HF energy at the CBS limit [42]
b Exact energy and HF energy at the CBS limit [54]

Appendix D: Energies for benzene

We tabulate the total energies and vertical excitation energies that were obtained for benzene, as presented in
Section III C of the main paper. These are listed in Table IV.

TABLE IV. Total energies and vertical excitation energies (both in Ha) for benzene in Section III C.

E0 E1 ∆E ∆E (σ2 matching)

-232.0674(11) -231.8627(9) 0.2047(14) 0.1640(13)
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Appendix E: Energies for ethylene

We tabulate the total energies and vertical excitation energies that were obtained for all ethylene structures, as
presented in Section III D of the main paper. These are listed in Table V.

TABLE V. Total energies and vertical excitation energies (both in Ha) for ethylene in Section III D.

τ (φ = 0) En ∆E ∆E (σ2 matching) φ (τ = 90°) En ∆E ∆E (σ2 matching)

0 -78.5649(4) — — 0 -78.4476(4) — —

-78.2616(5) 0.3033(6) 0.2964(7) -78.3577(5) 0.0899(6) 0.0897(6)

15 -78.5609(4) — — 20 -78.4472(4) — —

-78.2755(5) 0.2854(7) 0.2799(7) -78.3590(5) 0.0882(7) 0.0868(7)

30 -78.5462(4) — — 40 -78.4391(4) — —

-78.2925(5) 0.2537(7) 0.2460(7) -78.3661(5) 0.0730(6) 0.0735(7)

45 -78.5254(4) — — 60 -78.4267(5) — —

-78.3171(5) 0.2083(7) 0.2032(7) -78.3704(5) 0.0562(7) 0.0536(7)

60 -78.4953(4) — — 70 -78.4161(5) — —

-78.3339(5) 0.1614(6) 0.1579(7) -78.3722(5) 0.0439(7) 0.0427(7)

70 -78.4770(4) — — 80 -78.3992(4) — —

-78.3415(5) 0.1355(6) 0.1324(7) -78.3701(5) 0.0290(6) 0.0257(7)

80 -78.4540(5) — — 90 -78.3829(4) — —

-78.3449(5) 0.1091(6) 0.1089(6) -78.3676(5) 0.0154(6) 0.0112(6)

85 -78.4483(4) — — 95 -78.3697(4) — —

-78.3512(5) 0.0971(6) 0.0922(7) -78.3613(5) 0.0084(7) 0.0082(7)

90 -78.4424(5) — — 97.5 -78.3635(5) — —

-78.3531(5) 0.0893(7) 0.0881(7) -78.3593(5) 0.0042(7) 0.0023(7)

100 -78.3587(5) — —

-78.3559(5) 0.0027(7) 0.0014(7)

102.5 -78.3552(5) — —

-78.3529(5) 0.0023(7) 0.0042(7)

105 -78.3510(5) — —

-78.3447(5) 0.0062(6) 0.0050(6)

110 -78.3449(5) — —

-78.3224(5) 0.0225(7) 0.0189(7)

120 -78.3284(5) — —

-78.2929(5) 0.0355(7) 0.0232(7)



18

Appendix F: Overlaps of trained wavefunctions

For each system we compute the pairwise overlaps between all trained wavefunctions and tabulate the mean.
These are listed in Table VI.

TABLE VI. Mean pairwise overlaps for all systems.

System |Sij | System |Sij | System |Sij | System |Sij |

Li 0.0010(6) CH+ 0.0018(7) C2H4 (τ = 80) 0.002(2) C2H4 (φ = 95) 0.002(1)

Be 0.004(1) H2O 0.007(3) C2H4 (τ = 85) 0.001(1) C2H4 (φ = 97.5) 0.003(2)

B 0.0023(9) NH3 0.014(3) C2H4 (τ = 90) 0.008(2) C2H4 (φ = 100) 0.002(3)

C 0.0030(4) CO 0.003(1) C2H4 (φ = 0) 0.009(1) C2H4 (φ = 102.5) 0.007(1)

N 0.0040(5) C2H4 (τ = 0) 0.011(3) C2H4 (φ = 20) 0.002(2) C2H4 (φ = 105) 0.007(2)

O 0.0035(4) C2H4 (τ = 15) 0.007(3) C2H4 (φ = 40) 0.003(2) C2H4 (φ = 110) 0.009(1)

LiH 0.0047(9) C2H4 (τ = 30) 0.004(3) C2H4 (φ = 60) 0.001(1) C2H4 (φ = 120) 0.002(3)

BeH 0.0068(5) C2H4 (τ = 45) 0.003(2) C2H4 (φ = 70) 0.002(2) C6H6 0.001(4)

Be (many states) 0.0035(5) C2H4 (τ = 60) 0.008(2) C2H4 (φ = 80) 0.002(3)

BH 0.0033(9) C2H4 (τ = 70) 0.002(2) C2H4 (φ = 90) 0.006(2)
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Appendix G: Hyperparameters

We tabulate the hyperparameters that were used in all calculations. These are listed in Table VII. We also
tabulate the active spaces and spin configurations (S2, M = (N↑ − N↓)/2 (eigenvalue of Sz)) used to generate the
CASSCF baselines. These are listed in Table VIII.

TABLE VII. Hyperparameters used in calculations. (See Ref. [29] for more details.)

Hyperparameter Value Hyperparameter Value

One-electron basis 6-311G Maximum number of determinants 10

Dimension of e (# distance features) 32 Dimension of xi (embedding dimension) 128

Dimension of zi (kernel dimension) 64 Number of layers in wθ 1

Number of layers in hθ 2 Number of layers in gθ 2

Number of interaction layers L: Number of layers in ηθ:

small/intermediate systems & ethylene 4 small/intermediate systems & ethylene 3

benzene 5 benzene 5

Number of layers in κθ: Number of walkers:

small/intermediate systems & ethylene 3 small/intermediate systems & ethylene 1000

benzene 5 benzene 400

Batch size 2000 Number of equilibration steps 500

Number of training steps: Optimizer AdamW

small systems 5000/10000 Learning rate scheduler CyclicLR

intermediate systems 20000 Minimum/maximum learning rate:

ethylene 10000 small/intermediate systems & ethylene 0.0001/0.005

benzene 10000 benzene 0.0001/0.001

Cyclic frequency 500 Clipping window q 5

Minimum/maximum α 0.5/2.0 Epoch size 10

Resampling frequency 3 Number of decorrelation sampling steps:

Target acceptance 57% small/intermediate systems & ethylene 5

benzene 15

TABLE VIII. The active spaces, specifying N electrons across P orbitals, and spin configurations, used to generate the CASSCF
baselines for all systems.

System CAS(P,N) Spin(S2,M) System CAS(P,N) Spin(S2,M)

Li (5, 3) ( 3
4
/ 3
4
/ 3
4
/ 3
4
/ 3
4
, 1) Be (many states) (6, 4) (0/2/2/2/0/0/0/2, 1)

Be (5, 4) (0/2/2/2/0, 0) BH (5, 2) (0/2/2/0, 0)

B (5, 5) ( 3
4
/ 3
4
/ 3
4
/ 15

4
/ 15

4
, 1) CH+ (5, 2) (0/2/2/0, 0)

C (5, 6) (2/2/2/0/0, 0) H2O (5, 2) (0/2/0, 0)

N (5, 7) ( 15
4

/ 3
4
/ 3
4
/ 3
4
/ 3
4
, 1) NH3 (7, 2) (0/2/0, 0)

O (5, 8) (2/2/2/0/0, 0) CO (10, 10) (0/2/0, 0)

LiH (12, 4) (0/2/0/2/2/0/0/2, 0) C2H4 (4, 4) (0/0, 0)

BeH (12, 5) ( 3
4
/ 3
4
/ 3
4
/ 3
4
/ 15

4
/ 15

4
/ 3
4
/ 3
4
, 1) C6H6 (4, 4) (0/2, 0)
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