Deep neural network solution of the electronic Schrodinger equation
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Abstract The electronic Schrodinger equation can only be solved analytically for the hydrogen atom, and the numerically
exact full configuration-interaction method is exponentially expensive in the number of electrons. Quantum Monte Carlo
methods are a possible way out: they scale well for large molecules, can be parallelized, and their accuracy has, as yet, been
only limited by the flexibility of the wave function ansatz used. Here we propose PauliNet, a deep-learning wave function ansatz
that achieves nearly exact solutions of the electronic Schrodinger equation for molecules with up to 30 electrons. PauliNet has
a multireference Hartree—Fock solution built in as a baseline, incorporates the physics of valid wave functions, and is trained
using variational quantum Monte Carlo (VMC). PauliNet outperforms previous state-of-the-art VMC ansatzes for atoms,
diatomic molecules and a strongly correlated linear H;;, and matches the accuracy of highly specialized quantum chemistry
methods on the transition-state energy of cyclobutadiene, while being computationally efficient.

1 Introduction

A solution of the time-independent electronic Schrédinger equa-
tion of a given atomic system provides, in principle, full access
to its chemical properties. This equation can be solved analyti-
cally only for an isolated hydrogen atom, but solid-state physics
and quantum chemistry have been remarkably successful in devel-
oping numerical approximation methods (Piela 2014). For small
molecules containing up to a few tens of electrons, methods based
on the configuration interaction and the closely related coupled
cluster approaches or the multideterminant quantum Monte Carlo
(QMC) can reach impressive accuracy of up to six significant dig-
its in the total electronic energy (Morales et al. 2012).

Unfortunately, the computational cost of such high-accuracy
methods increases with a high power of the number of electrons,
N, making them impractical for most relevant molecules or mate-
rials. Computationally less demanding methods, such as the den-
sity functional theory (DFT), can scale to larger molecules, but
at the price of limited accuracy. Fundamentally, high-accuracy
methods scale unfavorably with N because the dimension of the
solution space of the Schrodinger equation for a many-body prob-
lem scales exponentially. A distinct but related problem that ap-
pears in some approaches is the so-called sign problem originat-
ing from the Pauli exclusion principle (Troyer & Wiese 2005).
The trade-off between accuracy and computational cost is appar-
ent when considering that most quantum chemistry methods rep-
resent electronic wave functions by linear combinations of Slater
determinants. A Slater matrix is constructed by selecting N out
of M > N molecular orbitals, and assigning N electrons to them,
resulting in a combinatorial growth of all possible matrices with
system size.

The Slater determinants have different roles in different quan-
tum chemistry methods (Fig. 1). In the configuration interaction
and coupled cluster approaches, the electronic problem is solved
entirely in the basis of the determinants (second quantization),
and as such their number in typical applications is the largest,
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Figure 1 | Combinatorial explosion of the number of Slater deter-
minants in quantum chemistry. Both configuration interaction and
multideterminant quantum Monte Carlo (QMC) approaches suffer from
the rapid scaling of the number of Slater determinants with system size,
which in both cases can be reduced with neural networks (NNs). The
multideterminant QMC combined with neural networks is the approach
developed in this work. The plot shows typical numbers of Slater deter-
minants used by high-accuracy quantum chemistry methods in state-of-
the-art calculations on atomic systems with at most a few tens of elec-
trons.

as the determinant expansion must recover all many-body inter-
actions that are missing in individual determinants (Shavitt &
Bartlett 2009). Stochastic methods that sample over vast determi-
nant spaces have been developed (Booth et al. 2009; Thom 2010),
but the underlying scaling trap persists nevertheless. Recent work
by Choo et al. (2020) suggests that the number of required de-
terminants can be reduced with the use of neural networks, but
whether this would also reduce the scaling issue has yet to be
demonstrated.

Conventional QMC methods (Austin et al. 2012; Foulkes et al.
2001; Needs et al. 2010) solve the electronic problem in real space
(first quantization), and treat a large portion of the correlation in
the electronic motion explicitly, which greatly reduces the number
of required determinants. Standard QMC variants are still practi-
cal for systems with hundreds of electrons, such as supramolec-
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ular complexes (Ambrosetti et al. 2014) and molecular crystals
(Zen et al. 2018). Even though only a single determinant can
be typically used for such large systems, QMC still outperforms
other electronic-structure methods applicable to such systems,
such as DFT or the random-phase approximation. However, for
small systems, where second-quantized approaches are applica-
ble, standard QMC methods need to use at least hundreds of deter-
minants to be competitive, and this number increases rapidly with
N. The large number of determinants is necessary to accurately
represent the nodal surface of the wave function, which is other-
wise difficult to improve with standard real-space QMC methods.
A key development enabling the progress in the present work is
the real-space backflow technique (L6pez Rios et al. 2006). The
idea of the backflow is to transform the electrons into pseudopar-
ticles, the position of each of which depends on the positions of
all the electrons, and this many-body mixing then leads to an im-
proved nodal surface (Feynman & Cohen 1956; Schmidt et al.
1979). While the traditional backflow does not reach the accu-
racy of the large determinant expansions and does not general-
ize well to larger systems, Luo & Clark (2019) recently showed
that representing the backflow with a neural network is a powerful
generalization.

Machine learning has had significant impact on quantum chem-
istry, especially in the case of supervised learning and prediction
of electronic energies (Bartdk et al. 2017; Behler & Parrinello
2007; Chmiela et al. 2017; Faber et al. 2018; Rupp et al. 2012;
Schiitt et al. 2018; Smith 2017; Welborn et al. 2018), electron
densities (Grisafi et al. 2019), and molecular orbitals (Schiitt et
al. 2019). This approach entirely avoids the solution of the Schro-
dinger equation, at the price of requiring datasets of preexisting
solutions, obtained for instance by density functional theory or
the coupled cluster method.

In contrast, the direct representation of correlated wave func-
tions with neural networks and their unsupervised training via the
variational principle, first proposed by Carleo & Troyer (2017) for
discrete spin lattice systems, is an ab-initio approach that requires
no preexisting data and has no fundamental limits to its accuracy.
It is motivated by the fact that neural networks are universal func-
tion approximators, and could therefore provide more efficient
means for approximating the exponentially scaling complexity of
many-body quantum systems. The initial attempts on lattice sys-
tems were later generalized to bosons in real space (Ruggeri et al.
2018; Saito 2018), and even electrons in real space (Han et al.
2019), but the latter approach does not use a wave function ansatz
in the form of a Slater determinant, and perhaps for that reason
does not reach the accuracy of the baseline Hartree—Fock method
for some systems.

In this work, we develop PauliNet, a deep learning QMC ap-
proach that replaces existing ad-hoc functional forms used in
the standard Jastrow factor and backflow transformation with
more powerful deep neural network representations. Besides the
sheer gain in expressive power, our neural network architecture
is specifically designed to encode the physics of valid wave func-
tions and incorporates the multireference Hartree—Fock method
as a baseline. These physically motivated choices are essential
to obtain a method that is not only highly accurate, but also con-
verges robustly, while maintaining computational efficiency. Us-
ing several test systems, we demonstrate that our neural network
ansatz significantly outperforms the accuracy of state-of-the-art

wave function ansatzes using a similar number of determinants.
Thanks to the trainable backflow ansatz, high accuracy can be ob-
tained with orders of magnitude fewer determinants compared to
traditional QMC methods. Our method has the asymptotic scal-
ing of N4, and we expect that it will be feasible to apply it to
much larger systems than is currently possible with existing high-
accuracy methods. We demonstrate this with an accurate calcula-
tion of the transition-state energy of the 28-electron cyclobutadi-
ene molecule, which was previously achievable only with highly
specialized methods.

The parallel work of Pfau et al. (2020) follows the same basic
idea as ours, but differs in one important aspect. Their architec-
ture does not encode any physical knowledge about wave func-
tions besides the essential antisymmetry, which is compensated
by a much larger number of optimized parameters. This differ-
ence likely leads to the higher computational cost per iteration.
In addition, their architecture is trained substantially longer and
as a consequence reaches higher accuracy for some systems.

2 Results

2.1 Deep neural network electronic wave function ansatz

At the core of our deep learning approach to the electronic Schro-
dinger equation is a wave function ansatz, dubbed PauliNet,
which incorporates both the well-established essential physics
of electronic wave functions—Slater determinants, multidetermi-
nant expansion, Jastrow factor, backflow transformation, and cusp
conditions—as well as deep neural networks capable of encoding
the complex features of the electronic motion in heterogeneous
molecular systems. Our proposed trial wave function, yg(r), r =
(ry,...,ry), is of the multideterminant Slater—Jastrow—backflow
type (Brown et al. 2007), where both the Jastrow factor, J, and
the backflow, f, are represented by deep neural networks (DNNs)
with trainable parameters 0 (Fig. 2),
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While the expressiveness of PauliNet is contained in the Jastrow
factor and backflow DNNgs, the physics is encoded by the determi-
nant form, the one-electron molecular orbitals, ¢ s and the elec-
tronic cusps, 7, in the following way.

Every valid electronic wave function must be antisymmetric
with respect to the exchange of same-spin electrons,

u/(...,r,-,...,rj,...)z—u/(...,rj,... . 2)

As is common in quantum chemistry, we enforce antisymmetry
via matrix determinants, as determinants change sign upon ex-
changing any two rows or columns.

To ensure a good starting point for the variational optimization
problem, we exploit the approximate Hartree—Fock (HF) method.
Specifically, we use a multireference HF calculation with a small
complete active space, and select the most dominant determinants
and their orbitals based on the magnitude of their linear coeffi-
cient. The HF-optimized one-electron molecular orbitals, ¢ u (r),
are then used as an input to PauliNet, and are modified during
training only by the backflow transformation.
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Figure 2 | Architecture of the newly developed PauliNet wave func-
tion ansatz. The information flows from the input electron and nuclear
coordinates, r and R, to the output wave function value, ¥. Modeling the
wave function via Jastrow and backflow functions is common in quan-
tum Monte Carlo, but here these functions are learned with deep neural
networks.

Any ground-state electronic wave function obeys exact asymp-
totic behavior defined by the cusp conditions as electrons ap-
proach each other and the nuclei (Kato 1957). We chose to build
the cusp conditions directly into the PauliNet functional form as
this makes the training more efficient as well as stable by remov-
ing divergences from the local electronic energy. We incorporate
the nuclear cusps by modifying the molecular orbitals using the
technique from Ma et al. (2005), and the electronic cusps by the
fixed cusp function, y(r). We ensure that the trainable Jastrow
factor and backflow DNNs are cuspless, so as to maintain the en-
forced cusp behavior (see Methods for details).

2.2 Robust deep Jastrow factor and backflow

PauliNet differs from conventional QMC ansatzes by representing
the Jastrow factor and backflow functions with specialized DNNSs.
To retain the antisymmetry of the wave function, as enforced by
the Slater determinants, the Jastrow factor and backflow DNNs
are constructed to be invariant and equivariant, respectively, with
respect to the exchange of same-spin electrons, P;;,

J(Pijr) = J(r), Pijfﬂi(r) = fﬂj(Pijr) 3)
The Jastrow factor is a nonnegative totally symmetric function,
which can encode complex electron correlations into the wave
function, but cannot modify the nodal surface inherited from the
determinant expansion.

We found that attempting to express the standard backflow
form of coupled electron coordinates with DNNSs leads to a diffi-
cult optimization problem. Instead, the PauliNet backflow has the
form of multiplying the bare one-electron molecular orbitals with
many-electron equivariant functions, f (Eq. 1). In combination
with just a few determinants, this presents a powerful representa-
tion of the electronic nodal surface.

The requirements of invariance and equivariance with respect
to permutation of particles, and the fact that particle interactions
are a function of their distances, are closely related construct-
ing DNNs that learn potential energy functions. PauliNet uses
an adapted form of one such DNN architecture, called SchNet
(Schiitt et al. 2018). SchNet is a graph DNN that represents each
particle with a vector in a high-dimensional abstract feature space,
X;, which is iteratively refined by interactions with other particles
through real-space trainable convolutions, y g, which encode the
inter-particle distances and are invariant with respect to particle
exchange,
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The SchNet architecture and its modifications for PauliNet are de-
scribed in detail in Methods. After a fixed number of iterations,
the final electron representations, x?L), which now encode com-
plex many-body electron correlations, are used as an input to two
trainable functions, #g, kg, Which return the Jastrow factor and
backflow, respectively.

J :=n9(2ix§L)), f;
Since the feature vectors, XE"), are equivariant with respect to elec-
tron exchange at each iteration, so are the backflow vectors, f;. As
a result, the Slater determinants in PauliNet produce an antisym-
metric wave function. Furthermore, J is by construction invariant
with respect to exchanges of electrons and therefore a symmetric
function that maintains this antisymmetry.
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2.3 Approaching exact solutions with few determinants

We train PauliNet via the variational principle, minimizing the
total electronic energy (variational QMC). The training data are
electron configurations that are generated on-the-fly by sampling
the electron distribution, |y|?> (Methods for details). We first in-
vestigate the same systems that were used to test DeepWF (Han
et al. 2019), in particular the hydrogen molecule (H,), lithium
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Figure 3 | Performance of PauliNet with one and six determinants
on atoms and diatomic molecules. PauliNet recovers 97% to 99.9% of
correlation energy with one to two orders of magnitude less determinants
than standard variational ansatzes. Four variants of PauliNet are shown,
single- and multideterminant as well as with and without backflow. The
reference results are taken from (1) Brown et al. (2007), (2) Casalegno et
al. (2003), (3) Morales et al. (2012), (4) Rios & Conduit (2019), (5) Seth
et al. (2011), and (6) Toulouse & Umrigar (2008). Each configuration
state function (CSF) corresponds to a few to a few dozen determinants,
depending on a system and the particular method. The numerical data
can be found in Table A1.

hydride (LiH), beryllium (Be), boron (B), and the linear hydro-
gen chain H;y. For the mono- and diatomic systems, PauliNet
recovers between 97% and 99.9% of the electron correlation en-
ergy (Fig. 3) after training for tens of minutes to a few hours on a
single GTX 1080 Ti graphics processing unit (GPU), in all cases
far beyond the accuracy of DeepWF. We compare these results to
the standard single-determinant (SD) and multideterminant (MD)
variational Monte Carlo (VMC) methods with and without back-
flow. In all cases, PauliNet with 6 determinants is substantially
better than all single-determinant and few-determinant ansatzes,
and is only surpassed by trial wave functions with tens or hun-
dreds of configuration state functions (CSFs), corresponding to
hundreds to thousands of determinants.

Figure 4 highlights two crucial aspects of our method. First,
the error in the correlation energy decreases monotonously as the
training progresses from the initial HF baseline level to the final
reported values. The learning curves are not yet fully plateaued in
most cases, demonstrating the high expressiveness of our neural
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Figure 4 | Roles of backflow and multiple determinants in training
of PauliNet ansatz. The four variants are combinations of a single or
multiple Slater determinants (SD/MD), a Jastrow factor (SJ), and a back-
flow (BF). Both the backflow and the use of a few determinants is crucial
for reaching high accuracy. Exponential moving average is applied to the
energy at each iteration.

ansatz, and indicating that even higher accuracy could be achieved
with more computational resources. Second, we compare our full
ansatz to variants using only a single determinant and variants
without backflow, and find that both these components are im-
portant for refining the nodal surface of the HF baseline, and thus
reaching high accuracy. The fact that only a few determinants are
sufficient to substantially reduce the correlation energy error com-
pared to the single-determinant case indicates that deep learning
can be an efficient tool to reduce the large number of determinants
sampled in other VMC approaches that directly operate on deter-
minants of fixed orbitals (Booth et al. 2009; Choo et al. 2020).
By having a powerful backflow transformation, each additional
determinant substantially increases the flexibility of the ansatz.

We further analyze the scaling of PauliNet with the number of
determinants and with system size on a set of four homonuclear
diatomic molecules from Li, to C, (Fig. 5). PauliNet reaches high
accuracy quickly with increasing but small numbers of determi-
nants. In the regime of a few to a few dozen of determinants,
PauliNet surpasses existing variational results and in most cases
reaches the accuracy of the corresponding diffusion Monte Carlo
(DMC) results. We note that DMC can be implemented straight-
forwardly for our approach, and is expected to lead to further in-
crease its accuracy.
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Figure 5 | Convergence of PauliNet with the number of determinants.
The accuracy of PauliNet increases with increasing number of determi-
nants as in standard methods, but reaches the accuracy of diffusion Monte
Carlo already at the variational level. Comparison is shown to VMC (cir-
cle/triangle) and corresponding DMC (cross) results taken from Filippi &
Umrigar (1996) (green), Toulouse & Umrigar (2008) (red), and Morales
et al. (2012) (yellow). Either the number of determinants (circle) or of
CSFs (triangle) is plotted.

2.4 Capturing strong correlation

Unlike the atoms and diatomics, the linear hydrogen chain Hy
exhibits strong correlation, which describes a situation where the
single-determinant or even few-determinant description of the HF
method is qualitatively insufficient, and the correlation energy
constitutes a significant part of the electronic energy (Motta et al.
2017). For H;,, we recover 98.41(8) % and 98.4(3) % of the cor-
relation energy in the equilibrium and stretched geometry, respec-
tively, using 16 determinants (Fig. 6). The results are only slightly
worse using a single determinant (98.10(9) %/97.5(4) %), but sig-
nificantly worse when the trainable backflow is also switched off
(93.7(2) %/82(2) %). Compared to standard VMC ansatzes that
were specifically adjusted for this particular application (Motta et
al. 2017), we reach significantly higher accuracy at equilibrium
and comparable accuracy at the dissociated limit.

We make three observations based on these results. First,
even though the system size and complexity of H, is signifi-
cantly higher compared to the systems in the previous section,
we achieve the same level of accuracy while using the same form
of the ansatz. Second, there is no decrease in accuracy in the
stretched geometry due to the increased strongly correlated char-
acter. Third, adding multiple determinants to the ansatz recovers
only a fraction of the correlation energy compared to the back-
flow transformation, highlighting the central role of the trainable
backflow in PauliNet.

2.5 Straightforward generalization to larger molecules

The previous two sections demonstrated the performance of
PauliNet on relatively small benchmark systems, for which es-
sentially exact results are already available from well-established
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Figure 6 | PauliNet captures strong correlation in H,, along the dis-
sociation curve. PauliNet results (blue) with single determinant (SD) or
16 determinants (MD) and with or without backflow (BF) are shown. The
backflow plays a much larger role than multiple determinants. PauliNet
outperforms highly specialized VMC ansatzes (yellow) of the single-
determinant (dotted) and multideterminant geminal (dashed) form by
Motta et al. (Motta et al. 2017). The correlation energy is calculated
with respect to multireference configuration interaction (MRCI) results,
also by Motta et al.

methods. In this section, we show that the same PauliNet ansatz
scales straightforwardly to larger molecules with complex elec-
tronic structure, for which only highly specialized derivatives of
standard quantum chemistry methods could deliver satisfactory
results as yet. For this purpose, we chose the automerization of
cyclobutadiene (Fig. 7a, 28 electrons), a chemical process that has
received considerable attention from both experiment and theory
(Lyakh et al. 2012). The experimental estimates of the energy
barrier range between 1.6 and 10kcal/mol, while the standard
CCSD(T) method predicts 18 kcal/mol, a two-fold overestima-
tion. The best computational estimates are available from various
flavors of the multireference coupled cluster (MR-CC) theory and
fall between 7 and 11 kcal/mol, without a decisive answer as to
which of the variants is closer to the ground truth.

Using the PauliNet ansatz with 10 determinants and the same
hyperparameters as used for the much smaller systems, we ob-
tain all-electron variational energies for the energy minimum and
transition states of cyclobutadiene, and thus for the energy bar-
rier. Since the energy barrier is only 0.01 % of the total energy,
we use a modified optimization protocol to stabilize the training
of the neural network with respect to the inherent stochasticity, in
which 10 independent copies are optimized simultaneously, and
periodically synchronized such that the five copies with higher
energies are discarded, and the rest duplicated.

With this modification, the total energies converge smoothly
(Fig. 7b) and by running two independent optimizations with
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Figure 7 | Calculating the transition barrier of cyclobutadiene au-
tomerization. (a) Cyclobutadiene automerization. The transition state
has a highly multireferential character. (b) Convergence of the total en-
ergy of the energy minimum and transition state with training. Abso-
lute energies of the energy minimum from HF at the complete basis set
limit and from CCSD(T) with the cc-pVnZ basis set (n = D, T, Q) are
shown. (c¢) Energy barrier obtained by sampling the trained PauliNet
wave functions, compared to references taken from Lyakh et al. (2012).
Results from five variants of multireference coupled cluster (MR-CC)
theory are shown (top to bottom): MR-DI-EOMCCSD, RMRCCSD(T),
Mk-MRCCSD(T), MRCISD+Q, and BW-MRCCSD(T).

the synchronization period of 250 and 375 iterations, we
obtain the estimates of the energy barrier of 9.9 +0.6 and
7.7 + 0.6 kcal /mol, respectively. The range larger than the re-
spective statistical sampling errors suggests a remaining degree
of stochasticity in the optimization, but nevertheless both results
are well within the range spanned by the MR-CC methods. We
note that compared to the MR-CC methods, many of which re-
quire use of system- and state-specific wave function ansatzes,
the PauliNet ansatz is constructed in essentially the same way for
all the systems studied in this work. The computational cost of
the cyclobutadiene optimization is 50 s per iteration on a single
GTX 1080 Ti GPU for each of the synchronized optimizations.

3 Discussion

We have designed PauliNet, a DNN representation of electronic
wave functions in real space and shown that it can outperform
state-of-the-art variational quantum chemistry methods that do
not use large determinant expansions. In contrast, our approach

requires only a few determinants, and as a result we anticipate that
its computational cost scales asymptotically as N* (N3 for a de-
terminant evaluation, and additional N for the evaluation of the
kinetic energy), subject to additional technical details (Foulkes et
al. 2001). PauliNet is thus a candidate for a quantum chemistry
method that can scale to much larger systems with high accuracy.

Compared to standard functional forms used in QMC, the use
of DNNSs has several advantages. First, the much higher flexibil-
ity of DNNs allows a variational approach to reach or exceed the
accuracy of diffusion QMC, which aids the calculation of accu-
rate derived electronic properties beyond the electronic energy.
Second, besides encoding more complex many-body correlations
between electrons, DNNss have an essentially unlimited flexibility
in the spatial degrees of freedom, circumventing the curse of in-
complete basis sets of quantum chemistry, which can be removed
only with DMC when using standard techniques. Third, the rapid
oscillations of the local energy close to heavy nuclei in standard
QMC mandate the use of pseudopotentials for heavier elements
such as transition metals. The flexibility of DNNs could sidestep
this necessity by smoothing out such oscillations.

In classical quantum chemistry methods, strong correlation
is usually treated by using large multideterminant expansions,
which are computationally demanding and introduce the problem
of selecting the proper subset of determinants. Treating strong
correlation on the level of Jastrow factors traditionally requires
construction of specialized many-body forms (Gasperich et al.
2017; Neuscamman et al. 2012). In contrast, we show that DNNs
are capable of learning strong correlation between electrons with-
out any specialized adaptation. Convergence to high accuracy
can be achieved with only a few determinants, changing the prob-
lem from searching or sampling over exponentially many determi-
nants to letting a deep neural network search over exponentially
many functions. Although it is unclear whether this is advan-
tageous in a strict mathematical sense, this is precisely the task
which deep neural networks have been demonstrated to be strong
at in a variety of real-world applications. Complementary ap-
proaches that use variational QMC in a second-quantized form
of the electronic problem have also been proposed (Choo et al.
2020). This class of methods has the advantage of eliminating
much of the complexity of electronic wave functions (such as the
antisymmetry or cusp conditions) from the machine-learning part
of the problem, but needs to cope with the ubiquitous limitations
of single-particle basis sets.

Already a brief comparison of our approach with that of Pfau
et al. (2020) hints at potential improvements of both architec-
tures. The combination of architectural design and optimization
methods used in FermiNet with the built-in physical constraints
of PauliNet appears to be a promising venue for computationally
affordable, scalable, yet highly accurate black-box methods for
quantum chemistry. We hope that the introduction of neural net-
works into the field of electronic QMC opens the possibility to
utilize the striking advances in deep learning from the last decade
in a new field.

4 Methods

Ansatz optimization We optimize the PauliNet ansatz individ-
ually for each atomic system in an unsupervised fashion using the



variational principle for the total electronic energy,

Ey =min E[y] < mein Elwpgl,
W

A (6)
Ely] = J dry(r)Hy(r)

Following the standard QMC technique, the energy integral is
evaluated as an expected value of the local energy, E, . [y](r) =
Hy(r)/y(r), over the probability distribution |y2(r)|,

E[y] =Ep 2 [ Eroclw](0)] @)

We generate training data for PauliNet on-the-fly by periodically
alternating training on one hand and sampling electron positions
with a standard Langevin Monte Carlo approach on the other
(Umrigar et al. 1993). Each sampled electron configuration is
used only once in an optimization run. We use a simplified ver-
sion of the method by Umrigar et al. (1993), in which the radial
step proposal is replaced with clipping the step length such that
the step size is always shorter than the distance to the nearest nu-
cleus, so the nucleus can never be “overshot”. The initial electron
positions for the Markov chain are sampled from Gaussian distri-
butions around the nuclei such that the effective atomic Mulliken
charges obtained from the HF method are respected.

To optimize the parameters 0 in the Jastrow and backflow neu-
ral networks, we use the weighted Adam optimizer (Kingma &
Ba 2017; Loshchilov & Hutter 2019) together with the total en-
ergy used directly as the loss function. To calculate the stochastic
gradient of the loss function over a batch of samples, we use a
gradient formula that takes advantage of the fact that the Hamil-
tonian operator is Hermitian (Ceperley et al. 1977),

L(0) = Ep.jy2) [ Eroclwol ()]
= 2E,.;,2 [ (Eioc[wol(X) — £(6)) Vg In|yypl]

This expression for the gradient requires calculating only sec-
ond derivatives of the wave function (for the Laplace opera-
tor), whereas direct differentiation would require third derivatives
(derivative of the Laplace operator). We smoothly clip the lo-
cal energy of each sample by a logarithmically growing clipping
function outside the window defined as 5 times the mean deviance
from the median local energy in a given batch. The learning rate
is controlled by a cyclic scheduling policy (Smith 2017).

8
VoL (0) ®)

Cusp conditions Eq. (1) ensures the nuclear cusp conditions
via the molecular orbitals ¢, (r;). We achieve this by modifying
the molecular orbitals using the technique from Ma et al. (2005)
with one simplification—we optimize the orbital values at atomic
nuclei, r; = Ry, via the energy variational principle, rather then
fitting them against references values. The electronic cusp condi-
tions are enforced by y(r),

C

Z_+
L+, —r;|

i<j

y(r) := &)

where ¢;; is either 5 or - dependmg on the spins of the two elec-

trons. To preserve the cusp conditions built into ¢, and y, the
Jastrow factor and backflow DNNs must be cuspless,

=0,

VeI @] (10)

Ve (@) =0

ri={r, Ry}

These conditions are ensured by constructing the DNNs appro-
priately, as detailed below.

PauliNet extension of SchNet SchNet is an instance of the
class of graph convolutional neural networks, and was designed
to model the molecular energy as a function of just the nuclear
charges and coordinates (Schiitt et al. 2018). In PauliNet, we use
SchNet to represent electrons in molecular environments by im-
plementing the iteration rule in Eq. (4),

(" +) . + (n,%) (n) ( (1)
2" Vo (e(lr; —r;)) @ hy (xj )
(nn) Z w(nn) e(|r —R1|))OY91 (11
(n+l) (n) (n, +) (n +) (n,n) /_(n,n)
+ Z 2o ) +gg " (z"")
where “©” denotes element-wise multiplication, w”, h",

9 °
and g(o") are trainable functions represented by ordinary fully-
connected DNNSs, and e is a radial basis function that featur-
izes the interatomic distances. The modifications of the original
SchNet are as follows.

(1) Since the wave function is a function of electron coordi-
nates, the iterated feature vectors x?") represent electrons, not
atoms.

The messages z;(n) received by the electron feature vectors
at each iteration are split into three channels, corresponding
to same-spin electrons (+), opposite-spin electrons (—), and
the nuclei (n). This builds more flexibility into the architec-
ture, and is motivated by the fact that electrons and nuclei
are particles of an entirely different type.

Each channel has a separate receiving function gy, again in-
creasing flexibility without substantially increasing the num-
ber of parameters.

Each nucleus is represented by a trainable embedding Yy ;,
which is shared across all iterations and not iteratively up-
dated. In VMC, the wave function is always optimized for
a given fixed geometry of the nuclei, so the nuclear embed-
dings can be assumed to already represent each nucleus with
its (fixed) atomic environment, hence the absence of need for
their iterative refinement.

(v) The distance features e are constructed to be cuspless, as de-

tailed below.
We use a distance featurization inspired by the PhysNet architec-
ture (Unke & Meuwly 2019), with a modified envelope that forces
all the Gaussian features and their derivatives to zero at zero dis-
tance,

(i)

(iii)

(iv)

e (r—uk)2/6

e (r) := (12)
i i=rody (13)
O i= %(1 +r.q;) (14)

where g, equidistantly spans the interval (0, 1) and r, is a cutoff
parameter.

Computational details All reported methods were imple-
mented with Pytorch (Paszke et al. 2019) in the open-source
DeepQMC package, which is available on Zenodo (Hermann et
al. 2020c) and developed on Github at https://github.com/



Table 1 | Hyperparameters used in numerical calculations.

Hyperparameter Value
One-electron basis 6-311G
Dimension of e 32
Dimension of x; 128
Dimension of z; 64
Number of interaction layers L 3
Number of layers in 74 3
Number of layers in kg 3
Number of layers in wg 2
Number of layers in hy 1
Number of layers in gg 1
Batch size 10000
Number of walkers 2000
Number of training steps 10000
Optimizer AdamW
Minimum/maximum learning rate 0.0001/0.01
Cyclic frequency 500
Clipping window ¢ 5
Resampling frequency 10
Number of decorrelation sampling steps 10
Target acceptance 57%

deepgmc/deepgme. The linear coefficients of the HF orbitals ¢,
as well as of the determinants in a multideterminant expansion
were calculated with PySCF (Sun et al. 2018) using the “6-311G”
Gaussian basis set. The plain fully-connected DNNs that repre-
sent the trainable functions in our architecture were chosen such
the total number of trainable parameters is around 7 x 10* (see
Table 1). The raw data (Hermann et al. 20202) and scripts (Her-
mann et al. 2020b) are available on Figshare and Zenodo, respec-
tively.
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Table A1l | Variational correlation energy (%) of five test systems obtained with four types of trial wave functions.

Slater-Jastrow

Slater—Jastrow with backflow

ref. SD? MD? SD MD
H, PauliNet 98.5(1) 99.8(1) 6D 100.02(3) 9998(3) 6D
(Casalegno et al. 2003) 97.8(2) - - -
Be PauliNet 88.0(3) 99.7(2) 6D 92.7(4) 99.9(1) 6D
(Toulouse & Umrigar 2008) 81.31(5) 99.28(5) 2 CSF - -
(Brown et al. 2007) 61.6(1) 98.88(4) 20CSF 73.8(1) 99.79(2) 20cCSF
(Morales et al. 2012) - 99.49(4) 160 CSF - -
(Seth et al. 2011) - - - 99.82(1) 50cCsF
B PauliNet 84.7(3) 93.3(3) 6D 90.5(4) 97.4(2) 6D
(Toulouse & Umrigar 2008) 80.19(4) 92.08(4) 2 CSF - -
(Brown et al. 2007) 61.02) 97.29(5) 20cCSF 86.92(8) 98.89(3) 20CSF
(Morales et al. 2012) - 98.85(5) 396 CSF - -
(Seth et al. 2011) - - - 99.56(3) 50cCSF
LiH PauliNet 98.1(2) 99.7(1) 6D 99.3(1) 99.7(1) 6D
(Casalegno et al. 2003) 93.04(2) - - -
Li, PauliNet 94.5(2) 97.6(2) 6D 96.8(5) 98.9(1) 6D
(Toulouse & Umrigar 2008) 89.63(4) 97.49(4) 8 CSF - -
(Morales et al. 2012) - 99.0(2) 526CSF - -
(Lépez Rios et al. 2006) 83.62(8) - 87.81(8) -

?Single-determinant ansatz.
bMulti-determinant ansatz. “D” denotes a determinant, “CSF” denotes a configuration state function.
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