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Computational modeling of molecules and
materials: What and Why?
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Computational modeling of molecules and
materials: How?

» Schrodinger equation — exact in principle, impossible to solve exactly
In practice
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Molecules made of nuclei (R;) and electrons (r;)

Atoms and electrons:
Thermodynamics and electronic structure

Total molecular wave function

w(ry, ..

Born—Oppenheimer approximation: separation

LT Ry, ..

. Ryy)

of nuclear and electronic motion

R,, ..

potential energy surface

atomic w HY,=EY,

electronic wave function

Ry = H

structurej

quantum
mechanics

'kstructure

electronic)

Vo

ucl

electronic
properties

*9 RN) — ﬁelec — l//n(rl’ Te rN)’En
E,(R,, ..

energy,
forces

p ~ e~ BT

molecular
dynamics

—
»

thermodynamic
properties




<

Electronic structure problem
____________________________________________________________________ O e
Basis |x) Energy E
Molecule ./ Hamiltonian H Ay = Elw) Wave function y(X)
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Lo Hy( M) Wp(X)

Ab-1nitio: exact 1, approximate £ (coupled clusters, quantum

Monte Carlo)

Semi-empirical: approximate 7, exact

theory, tight-binding, Hubbard mode

D)

(density functional

Machine learning (force fields, density functionals, wave

function ansatzes)




Machine learning: Data and objectives

Human learning: World model from observation and intervention
Machine learning: Algorithms improve from empirical evidence
Data: Formalized empirical evidence, subset of “ground truth”
Objective: Measure of quality of a model

Generalization: Does the model work on new empirical evidence?



Machine learning flavors
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Machine learning: Glorified fitting?

“With four parameters I can fit

an elephant, and with five I can

make him wiggle his trunk.”
—J. von Neumann

100

50

-50

-1
0% 80 0 50 100
X

neural
networks

toy models

serious models

AlphaFold 2

GPT-3

number of

Mayer et al. Drawing an elephant with four complex parameters. AJP 78, 648 (2010)
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Bias—variance tradeoff and overfitting
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Regularization and high dimensionality

20 Degrees of Freedom
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Regularization — picking the most
smooth fit

Balestriero et al.: Learning in High
Dimension Always Amounts to
Extrapolation



Test / Train Error

Machine learning and ‘‘double descent”
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Gaussian process regression

f(x) = sin(2xx)
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Gaussian process regression
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Straightforward generalization to multiple dimensions and
arbitrary descriptors

Needs good descriptors
“Just” a linear combination — limited flexibility
Limited to small datasets

Largely replaced with neural networks



From Gaussian processes to neural networks




Neural networks and deep learning

y = Weg(Wg(W Ex)—h)=h) >
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Deep neural networks are “universal approximators”
— good descriptors unnecessary

Cannot be optimized analytically — gradient descent

Fast evaluation of gradients via backpropagation
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Stochastic gradient descent from minibatches
(implicit regularization)
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Control policy

Some deep learning successes

RESEARCH

COMPUTER SCIENCE

A general reinforcement learning
algorithm that masters chess, shogi,
and Go through self-play

David Silver>*{, Thomas Hubert', Julian Schrittwieser'*, Ioannis Antonoglou’,
Matthew Lai', Arthur Guez!, Marc Lanctot!, Laurent Sifre', Dharshan Kumaran’,
Thore Graepel', Timothy Lillicrap’, Karen Simonyan’, Demis Hassabis't

The game of chess is the longest-studied domain in the history of artificial intelligence.

The strongest programs are based on a combination of sophisticated search techniques,
domain-specific adaptations, and handcrafted evaluation functions that have been refined

by human experts over several decades. By contrast, the AlphaGo Zero program recently
achieved superhuman performance in the game of Go by reinforcement learning from self-play.
In this paper, we generalize this approach into a single AlphaZero algorithm that can achieve
superhuman performance in many challenging games. Starting from random play and given
no domain knowledge except the game rules, AlphaZero convincingly defeated a world
champion program in the games of chess and shogi (Japanese chess), as well as Go.

Article

programmers, combined with a high-performance
alpha-beta search that expands a vast search tree
by using a large number of clever heuristics and
domain-specific adaptations. In (Z0) we describe
these augmentations, focusing on the 2016 Top
Chess Engine Championship (TCEC) season 9
world champion Stockfish (77); other strong chess
programs, including Deep Blue, use very similar
architectures (1, 12).

In terms of game tree complexity, shogi is a
substantially harder game than chess (13, 14): It
is played on a larger board with a wider variety of
pieces; any captured opponent piece switches
sides and may subsequently be dropped anywhere
on the board. The strongest shogi programs, such
as the 2017 Computer Shogi Association (CSA)
world champion Elmo, have only recently de-
feated human champions (15). These programs
use an algorithm similar to those used by com-
puter chess programs, again based on a highly
optimized alpha-beta search engine with many
domain-specific adaptations.

AlphaZero replaces the handcrafted knowl-
edge and domain-specific augmentations used

in traditinnal cama.nlavinoe nrnoramc with daan

Magnetic control of tokamak plasmas
through deep reinforcementlearning

Received: 14 July 2021

Accepted: 1 December 2021
Published online: 16 February 2022
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Demis Hassabis' & Martin Riedmiller*?

https://doi.org/10.1038/s41586-021-04301-9  Jonas Degrave'?, Federico Felici>**, Jonas Buchli'**, Michael Neunert'?, Brendan
Tracey'**, Francesco Carpanese'**, Timo Ewalds'®, Roland Hafner'?, Abbas Abdolmaleki’,
Diego de las Casas', Craig Donner’, Leslie Fritz', Cristian Galperti?, Andrea Huber',

James Keeling', Maria Tsimpoukelli', Jackie Kay', Antoine Merle?, Jean-Marc Moret?,

Seb Noury', Federico Pesamosca?, David Pfau’, Olivier Sauter?, Cristian SommarivaZ,
Coda? Basil Duval?, Ambrogio Fasoli?, Pushmeet Kohli', Koray Kavukcuoglu',

Nuclear fusion using magnetic confinement, in particular in the tokamak

configuration, is a promising path towards sustainable energy. A core challenge is to
shape and maintain a high-temperature plasma within the tokamak vessel. This
requires high-dimensional, high-frequency, closed-loop control using magnetic
actuator coils, further complicated by the diverse requirements across a wide range of
plasma configurations. In this work, we introduce a previously undescribed
architecture for tokamak magnetic controller design that autonomously learns to
command the full set of control coils. This architecture meets control objectives

¥ f specified at a highlevel, at the same time satisfying physical and operational

Inputs: m =92, t<132
Neural net: MLP = 3 x 256
Outputs: a = 19

constraints. This approach has unprecedented flexibility and generality in problem
enecificatinn and vieldc a natahle redictinn in decion effart ta nradiice new nlacma

Article

Highly accurate protein structure prediction

with AlphaFold

https://doi.org/10.1038/s41586-021-03819-2  John Jumper*™, Richard Evans'*, Alexander Pritzel**, Tim Green'#, Michael Figurnov',

Received: 11 May 2021
Accepted: 12 July 2021
Published online: 15 July 2021

Open access
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® Check for updates Pushmeet Kohli' & Demis Hassabis

Olaf Ronneberger*#, Kathryn Tunyasuvunakool'4, Russ Bates'*, Augustin Zidek"*,

Anna Potapenko'*, Alex Bridgland'“, Clemens Meyer'“, Simon A. A. Kohl**,

Andrew J. Ballard'*, Andrew Cowie'4, Bernardino Romera-Paredes'?, Stanislav Nikolov'?,
Rishub Jain'4, Jonas Adler', Trevor Back', Stig Petersen', David Reiman’, Ellen Clancy’,
Michal Zielinski', Martin Steinegger®, Michalina Pacholska', Tamas Berghammer',
Sebastian Bodenstein', David Silver', Oriol Vinyals', Andrew W. Senior', Koray Kavukcuoglu',

Proteins are essential to life, and understanding their structure can facilitate a
mechanistic understanding of their function. Through an enormous experimental
effort'™*, the structures of around 100,000 unique proteins have been determined®, but
thisrepresents asmall fraction of the billions of known protein sequences®’. Structural
coverage is bottlenecked by the months to years of painstaking effort required to
determine a single protein structure. Accurate computational approaches are needed
toaddress this gap and to enable large-scale structural bioinformatics. Predicting the

RESEARCH

QUANTUM CHEMISTRY
Pushing the frontiers of density functionals
by solving the fractional electron problem

James Kirkpatrickl*T, Brendan McMorrnw’T, David H. P. Turban”r, Alexander L. Gauntl']',

James S. Spencer, Alexander G. D. G. Matthews', Annette Obika’, Louis Thiry?, Meire Fortunato?,
David Pfau’, Lara Roman Castellanos!, Stig Petersen’, Alexander W. R. Nelson®, Pushmeet Kohli*,
Paula Mori-Sanchez®, Demis Hassabis!, Aron J. Cohen™**

Density functional theory describes matter at the quantum level, bu* " — == "'~ ~~reetardiv - -

code [PySCF (19)]. The functional was eval-
uated by integrating local energies computed
by a multilayer perceptron (MLP), which took
as input both local and nonlocal features of
the occupied Kohn-Sham (KS) orbitals, and
can be described as a local range-separated
hybrid. To train the functional, the sum of
two objective functions was used: a regression
loss for learning the exchange-correlation en-
ergy itself and a gradient regularization term
that ensured that the functional derivatives
ron heoigad_in calfoenncictant fiald (QORY pal-

suffer from systematic errors that arise from the violation of mathe
functional. We overcame this fundamental limitation by training a n
data and on fictitious systems with fractional charge and spin. The
(DeepMind 21), correctly describes typical examples of artificial cha
correlation and performs better than traditional functionals on thor
atoms and molecules. DM21 accurately models complex systems su
charged DNA base pairs, and diradical transition states. More cruci
methodology relies on data and constraints, which are continually it
viable pathway toward the exact universal functional.
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Symmetry and equivariance
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Symmetry and equivariance

Symmetry group — set (group) of transformations g leaving an
object x unchanged (invariant)

Equivariant map (function) — map f from a symmetric object
to another object that preserves symmetry

f(Tx) = T, fx)

If objects are (lists of) numbers (scalars, vectors, tensors), the
transformations are encoded in 1rreducible representations

f(D,(¢)x) = D,()f(x)

Invariance — special case of equivariance for the trivial
representation

€D (g)x) = f(x)



Symmetries and equivariance in machine learning

*  Without explicit treatment, ML models are not equivariant

* Poor man’s equivariance — data augmentation

« Invariance easy through invariant descriptors
fo(§D,(8)%)) = f(E(0))

* General equivariance must be built into the ML model

- Examples of symmetry preserving operations

Vo fIVDY X = g0 X, )



Machine learning in practice

« Parameters vs. hyperparameters

« Dataset splitting

TRAINING TEST

spitaaine [ S oamser

training,
and test subsets.

2 For each combination [ — VALIDATION ERROR
of hyper-parameters:
yp p Train model \ @ _/_l;valuate on validation set

ESTIMATE FOR
Jcrosobest NN N — GENERALIZATION ERROR
hyper-parameter \ /_, (COMPARABLE WITH OTHER MODELS)

combination Optimal @
hyper-parameters Evaluate on independent test set

Unke et al. Machine learning force fields. Chem. Rev. 121, 10142 (2021)



Machine-learning force fields

« Circumvent high cost of electronic-structure methods via a
surrogate force field model for molecular dynamics

Accuracy

>

Efficiency

Unke et al. Machine learning force fields. Chem. Rev. 121, 10142 (2021)



Machine-learning force fields

* Given a few thousand reference structures, energies, and
forces, train Ey({Z;, R;})

« Training set needs to cover what’s sampled during MD
* Interpolation vs. extrapolation?
+ active learning, uncertainty, ensembles

« Cost of ab-initio MD vs dataset preparation, training, and ML
MD

Preliminary Choosing an Data Data Traini Producti
Considerations ML method Collection Preparation raining roduction

Unke et al. Machine learning force fields. Chem. Rev. 121, 10142 (2021)



X; = (Zia R,‘)

Machine-learning force-field models

+ Traditional many-body expansion

E({Xi})=ZE(”(X)+ 2 E(z)({xl,x})+ > EOUx, x,x ) + .

ijk

«  Semi-local atomic energy expansion
E({x;}) = X e(xi. (X} jew,) = Z, o(EX (X} jen))

*  Many-body expansion of local environment

g(Xp {X }]e,/l/) — [5(1)(){) {6(2)(){1’ ]) }]e/V9 {5(3)(X19 ]9 Xk) }j,ke/l/l.a .. ]

« Local environment descriptors from message passing

& = gp(&", {gj(n) ier) %




X, = (Z,R))
Radial and angular basis for atomic environments

the only rotationally invariant one-atom descriptor
3 (1)(Xi) =/
HEE N

’g'(l)(X,-) = (][Z(Zl)) /; = 4/—:.33

“one-hot encoding”

< (2)(Xl-, Xj) = |2, Zja R, - Rj]
5(2)(Xz‘a Xj) = [(JKZ(ZZ'))» (fz(zj)>a (%(Rij))a (Ylm(ﬁij)]

14
& (3)(Xl'9 X5 X)) = £, Zja Z, Rl‘j, Rj, (9jik]

EO(x; X;, X)) = [ X (C”n(sz)%'(Rik))a (Ylm(ﬁij)Yl’m’(ﬁik))]
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Z.00 of atomic descriptors

Good news — convergence towards a single framework

Behler-Parrinello (2,3) PIPs (n*)
DeepMD (2,3)  permutation

ACE (n 2rmut

MTP% ;pmjecuon GTTP (2,3) invariant w0 @)

SNAP (4) atomic polynomials 2 s

5 limit sharp SyMmety A hidslts(;[ap;rﬁs Wasserstein
/' functions g \ sk
blur permutations

SOAP (3) correlation distances Bos (2)
FCHL (2,3,4) B permutations Sorted CM (2)
Wavelets (3) (histogram)

NICE (n*) rotations \
(density products) " atom Spectral FP (n)

centred spthl\n('j (n)
, . distributions sorte
Diffraction FP ' molecular eigenvalues
P o tlranslatlons matrices pe(rgz)%ﬁ]tg)ms
potentia :
symmetrized . f|e|ds JE@ atom jnternal R e

local field translations transform den ty coordinates functions

& rotations fields Z matrix
3D Voxel
molecular

symmetry : translations graphs
other relation permutations & rotations

family of features
named features (body order)

2,3,4: radial, angular, dihedrals _
n: n-body Cartesian

n*: complete n-body linear basis coordinates

Musil et al. Physics-Inspired Structural Representations. Chem. Rev. 121, 9759 (2021)



Gaussian

Neural

Simplified classification of ML force fields

Fixed descriptor

Message-passing descriptor

s SOAP, FCHL,...

=

% Behler-Parrinello, SlfflelleItI; P;‘ayﬂs\ll\lft’
2 DeepMD, ANI,... 1o ’
2 DimeNet,

NewtonNet,...
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Example 1: Origins of structural and electronic
SOAP-GAP transitionsindisorderedsilicon

https://doi.org/101038/s41586-020-03072-z  Volker L. Deringer'>, Noam Bernstein? Gabor Csanyi®, Chiheb Ben Mahmoud*®,
) Michele Ceriotti*®, Mark Wilson®, David A. Drabold’ & Stephen R. Elliott®®
Received: 14 December 2019

Accepted: 12 November 2020

Structurally disordered materials pose fundamental questions'*, including how
different disordered phases (‘polyamorphs’) can coexist and transform from one
phase to another’®. Amorphoussilicon has been extensively studied; it forms a

Published online: 6 January 2021

M Check for updates

*  Molecular dynamics: 100,000 atoms, 103-nm cell, 10 ps

« Training: PW91, <200 atoms per uc, 2,500 structures, 170,000
atomic environments

a 11 GPa b 12 GPa c 13 GPa d 15 GPa e 20 GPa

Progress of compression run



Example 2:
Behler—
Parrinello

Ab initio thermodynamics of liquid and solid water

Bingging Cheng?®', Edgar A. Engel®, J6rg Behler®<, Christoph Dellago?, and Michele Ceriotti?

2Laboratory of Computational Science and Modeling, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland;
bUniversitat Géttingen, Institut fir Physikalische Chemie, Theoretische Chemie, 37077 Géttingen, Germany; <International Center for Advanced Studies of
Energy Conversion, Universitidt Gottingen, 37073 Géttingen, Germany; and YFaculty of Physics, University of Vienna, 1090 Vienna, Austria

Edited by Pablo G. Debenedetti, Princeton University, Princeton, NJ, and approved December 3, 2018 (received for review September 4, 2018)

Thermodynamic properties of liquid water as well as hexago- machine-learning (ML) techniques to avoid the prohibitively
nal (lh) and cubic (Ic) ice are predicted based on density func- large computational expenses otherwise incurred by extensively
tional theory at the hybrid-functional level, rigorously taking into  sampling phase space by using first-principles methods. In par-

arraiint Aannantiim nuirlaar matinn  anharmanis fliirtniiatinne and tirmlar wra 1ca canhictinatad tharmadimamin intacratinan (MTT

Molecular dynamics: 800 molecules, nuclear quantum effects

Training: revPBEO-D3, 64 molecules, 1,600 structures
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Roaming leads to amino acid photodamage: A deep learning study of

tyrosine

Julia Westermayr,! Michael Gastegger,? Dora Vords,? Lisa Panzenboeck,? # Florian Joerg,3 > Leticia Gonzalez,>

6

Example 3: T A
[ ) DUniversity of Warwick, Department of Chemistry, Gibbet Hill Rd, Coventry, CV4 7AL,

UK
D Technical University of Berlin, Machine Learning Group, 10587 Berlin, Germany
SChNet 3 University of Vienna, Faculty of Chemistry, Institute of Theoretical Chemistr Wiihvinaor St» 17 100N Vionna
Austria.
Y Present address: University of Vienna, Faculty of Chemistry, Department nature
1090 Vienna, Austria. p
3)Present address: University of Vienna, Faculty of Chemistry, Institute of Cc ChemlStr y

1NON \KEnunna Asictwrin

*  Molecular dynamics: 1000
1 ps trajectories, 29 electronic
states

» Training: CASPT2(12e,110),
15,000 structures

— SO Movie _Discovering roaming
Scene Vacuum |Star Tyrosine

S Director P. Marquétand
2 Camera J. Westermayr
Date 2021/05

P

Energy [eV]

—— CASPT2 - T,
....... CASSCF —— ADC(2) Te

1.0 15 2.0 25 1.0 15 2.0 25
PhO-H bond length [A] PhO-H bond length [A]

Active state indicated
Available states: S9-S4 / T1-Tg




. N s Z, 1
H:Z(_?V"f_zui—lzﬂ)+Z|r.—r-|

I i<j ! J

h
Electron coordinates: (ry,...,I'y) = T
Molecule specified by atom charges Z; and coordinates R,

Solution: eigenstates y, and their energies £, , including
the ground state yy, E

Variational principle: E; = min,, Idr w(t)Hy(r)

Analytically solvable only for hydrogen atom, but many
approximate numerical methods from quantum chemistry



« Density-functional theory (DFT) exact in principle, but only
approximate functionals known 1n practice

Va\

H:=Y (h + vglnlx)), n@E) =Y. ¢(r)>
" ( | n(r)  SE[n]

r—r'|  on(r)

d

), E.[nl = |dreg(n(r)

Vegrl](r) =

« (G1ven reference energies, learn functional? X
« DFT calculation involves minimization w.r.t. energy

« Given reference energies and densities, learn functional



End-to-end learning with autodifferentiation

a) 0—0 b) KS iteration _(in)
(@) | molecule (b) n, ?8L /0 Sn)
i 4 L’lz_ ______ )
{l --------- ‘ V
[ create KS |---__ Cor;pute[x]c/%ot(en)tial]
potential |<—b| Eycoln|/on(r
v [n]ll}. Uxcy [n] OLg
S : : \ 8Ek
= solve KS compute |<1-- ---- >
© equations J energy E
S . . 3
%E {¢z }l? é Exc,o [n] g
S : obtain new <t - -| compute XC energy
S | \ density A I3 i) )
2R |
[z t)|. t
: ;0L ) om™)
o (C) XC energy
= Ve ~
7 i B €xc, [n]
e Tle e | E 1 |
| S| x . x |2 integral
C =D =Dk
n|< > 8 AR o /\->> —> Fyc |1
818 5 2 S°©
@ 1 [ | | B
N Y

L1 et al. Kohn-Sham equations as regularizer. PRL 126,036401 (2021)



Incorporating physics improves generalization

KSR ¢l I
~1.20 — KSR globa
n (d)
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«  Only two points needed to fit dissociation of H»

L1 et al. Kohn-Sham equations as regularizer. PRL 126,036401 (2021)
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Example: Pushing the frontiers of density functionals
by solving the fractional electron problem
DM21 y SOWIng P

James Kirkpatrick'*t, Brendan McMorrow't, David H. P. Turban't, Alexander L. Gaunt't,
James S. Spencer!, Alexander G. D. G. Matthews', Annette Obika’, Louis Thiry?, Meire Fortunato’,
David Pfau', Lara Roman Castellanos’, Stig Petersen’, Alexander W. R. Nelson', Pushmeet Kohli,

Paula Mori-Sanchez®, Demis Hassabis!, Aron J. Cohen>**

code [PySCF (19)]. The functional was eval-
uated by integrating local energies computed
by a multilayer perceptron (MLP), which took
as input both local and nonlocal features of
the occupied Kohn-Sham (KS) orbitals, and
can be described as a local range-separated
hybrid. To train the functional, the sum of
two objective functions was used: a regression
loss for learning the exchange-correlation en-
ergy itself and a gradient regularization term
that ensured that the functional derivatives

« DMZ21: Range-separated meta-GGA hybrid, comparable in
accuracy and training to state-of-the-art functionals

« Exact constraints through data augmentation

SCAN B3LYP M06-2X ) ~N
—_— — X(r LDA
wB97X DM21 1 WB X G
- features LA
100 ’,—"——_ W!xgmHF
H> R
R f %0 enhancement
,// — T T —e— - = factors J’
0 A “:" o
< .
.%0 L v
int. occ. 2 EMLP
—100 —— frac. occ. v . |
X
TR
0 2 4 0

bond length [A]




Machine-learned wave functions

Chem. Listy 712, 640-647 (2018)

JE STROJOVE UCENI BUDOUCNOSTI TEORETICKE CHEMIE?

KAREL BERKA®, STEPAN SRSEN® a PETR
SLAVICEK"*

Numerické algoritmy strojového uceni ale mohou
zmé&nit piimo 1 ab initio kvantovou chemii. Pfesné vypocty
jsou zde komplikovany korelacemi mezi pohyby jednotli-
vych Castic, coz vede k exponencialné se zvySujicim naro-
kiim s rostouci velikosti systému. Techniky strojového
uceni aplikované na samotnou vinovou funkci mohou byt
v nékterych piipadech schopny vyrazné vypocty urychlit®.

48Carleo & Troyer, Science 355, 602 (2017)



Variational quantum Monte Carlo

Schrodinger
equation

Basis states,
wave function

Monte Carlo
integration

Local energy

Variational
principle

Gradient descent

Markov-chain
sampling

H|y) = E|)

ly) = 2 X)) (x|y) = X wX)|w)

w|H )

(
1o\ YD :
Eo(x) = ) (x|H|X) e (zero variance)

E = min,, E[y] < ming E{ys]
VoElwgl = Ey|(E (%) — ExlE(x)]) Voln|yp(x)|]

x' ~exp( —|[x = x|[/7), P(x:=x) = |px)|*/|wx)|*



Deep variational quantum Monte Carlo

def fit_wf( 0 Vok
hamil: Hamiltonian[x], ‘//”’__\\\\\
wf: Callable[[X], Psil, %O
sampler: Iterator[X], X 4 Eloc

opt: torch.optim.Optimizer,
steps: 1int,

for _ in zip(steps):

loss = (
(E_loc - E_loc.mean()).detach() = psi.log()
).mean()
loss.backward()
opt.step()

opt.zero_grad()



First and second quantization

*  Quantum states of many-particle systems must be
(ant1)symmetric for bosons (fermions) with respect to exchange
of particles

«  Two ways to treat the (anti)symmetry

 N=3,K=5

First quantization

ly) = Z WXy, .o Xy) | X Xy) )I( = I(2.7,3.1,4.9)

Xy Xy coordinates X;

Second quantization (one-particle discrete basis: X — k)
n=(0,0,0,2,0,1)

|w) = Z png, ....ng) [ ny-ng) —
o O

nyng occupation numbers 7,



Electronic Schrodinger equation @
(first quantization)

.

Electron coordinates, t = (ry, ..., I'y), 3N-dimensional space

(Asymmetric) basis states are |r), antisymmetric wave function y(r)

ﬁz" _Z |r—r| _Z |r—R1|

kmetlc

electron—electron electron—nucleus

Molecule specified by atom charges Z; and coordinates R,

Local energy needs evaluation of Laplacian

| Al//(r) Z
Epoo(x) = >
loc(r) 2 W(r) Z |I‘ — I | z[: |ri_RI|




¥ Electronic Schrodinger equation
G (second quantization)

Discrete basis: orthogonal orbitals ¢, (r), k = 1,...,K

Occupation numbers n, 7, = 0,1, 3, m = N,n = {kj, ..., ky}

Antisymmetric basis states are Slater determinants,
In) = det Pr. (r;), (asymmetric) wave function y(n) =

Local energy as a sum over all Slater determinants that differ in
occupation of up to two orbitals

_ w(n’) w(n”)
Ejp(n) = Z My o T Z Vidmn ™y

n:k—l n":k,l-m,nn

hy = |dr Qk(r)<_%A -2, |r_ZIRI| ) @/(T)

(X))@, (r)e,(r)
r —r’|

Vklmn — %J drdr’ -



Determinant expansion curse

first quantization second quantization

N
O(e™) DMC sCI AFQMC FCIQMC CC

»

.
.
.

O(N)

60/
. 6
. Q»O
t‘ /(
3
“‘@-
. %
"%

FN-DMC NNB | NQS  ph-AFQMC CCSD---
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Example 1: Py——

PauliNet Deep-neural-network solution of the electronic
Schrodinger equation

ARTICLES

Jan Hermann ©'2%, Zeno Schatzle ®' and Frank Noé ©®134%

1. Slater determinant ﬁHﬁﬁﬁ

We(r) := det @, (r)), k=1,...,.N b ¢ -
2. Generalized Slater determinant 5]
1/19(1:) — detf]‘a-,g(r), fe(g@l]r) — g@ljfe(r) g 10i
3. Real-space baseline/envelope 5 -
Wp(r) 1= detfy, o(v)@,(r)) %@o v ‘f/ 1'01 - 0

==+ CCSD(T) Transition BN PauliNet



Example 2:
Neural
quantum states

ART'CLE ") Checl
OPEN

Fermionic neural-network states for ab-initio
electronic structure

Kenny Choo'® Antonio Mezzacapo?™ & Giuseppe Carleo3™

- Instead of storing a CI vector ¢, (FCI), sampling it stochastically
(FCIQMC), compressing it (CC), represent it with a NN, yy(n)

—
<

—
<
W

107° 1

Probability
C)I
~

—
<
©

0 100 200 300
Hilbert Space Index Nuclear separation (A)

e FCI —-105.75 7 | —-—- Hartree-Fock CCSD(T)
e 106.00 | \ -o- * RBM
e v CCsD
— 1
106251\ _107.64 %
] \ % g
T -106501{ % - S
P ) \'i’-i-.::::fi'/ - _
qe; -106.751  }-107.681_ = 1 -
C I\ 1' 1 1 ”¢’
b -107.00{ % 1o1e 13
—107.25 - PN Pl
\\\\ ”, N o
~107504 = N\\~=--" mkmmm T
\\**-*--‘*""r"*‘ o
~107.75 1 , , . . . |
400 500 0.75 1.00 1.25 1.50 1.75 2.00 2.25



Summary

Machine learning can help avoiding as well as solving electronic
structure

Two leading ML techniques: Neural networks and Gaussian
processes

Machine-learning force fields are a mature tool ready for production
calculations

Machine-learned Hamiltonians and wave functions are a promising
tool, but still in the making




SchNet for molecules

» Instance of a graph neural network Graph neural networks
- Original SchNet is a force field  initialize X
E({7,R}) 1= I e)
XD = g (x®, 2)
0) ._
X: = Xp
l ’ @( edge)

2" = Y, wy'(e(R; ~R)D) © by’ (x{")
X(n+1) — X(n) n g(n)(z(n))

E= Y o(x)

Schiitt et al. J. Chem. Phys. 148,241722 (2018)



SchNet for electrons in molecules

» Nodes represent electrons
* Separate same-spin, opposite-spin, and nuclear messages

» Single SchNet instance for both the Jastrow factor Jy(x)
and backflow (1)

2" = Z;ng F(e(r; = ;D) @ hy" (x")
2" = ) Wi (e(r;— RyD) © Yo,

XD = X 2 g1 (709)) 4 g (1)



