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van der Waals dispersion – two atoms

• Correlation of 
charge 
fluctuations in 
atoms causes 
attraction
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Electronic excitations Harmonic oscillators
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Real atoms as single oscillators
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• van der Waals 
dispersion 
depends on 
the averaged 
effect of all 
charge 
fluctuations

Atom Oscillator

• Parametrize 
oscillator to 
match static 
polarizability 
and integral 
over imaginary 
frequency—
C6 coefficient

• Polarizability at 
imaginary 
frequencies



Many-body dispersion (MBD)

• Parametrize oscillators
—α(0), ω—from a DFT 
calculation 

• Transform to coupled 
coordinates with no 
interaction
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Quantum 
mechanics
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Two atoms in MBD
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Supramolecular complexes

• C70 fullerene in cycloparaphenylenes & buckyball 
catcher 

• Synthesized and characterized in solution



Methods

Diffusion quantum 
Monte Carlo (DQMC)

Many-body 
dispersion (D3)

D3: dispersion 
correction

many-body “exact”, 
expensive

many-body 
approximate, cheap

2-body/3-body 
approximate, cheap



Interaction energies
DQMC (reference) MBD

D3 D3 (3-body)
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• MBD within 5% of reference Monte Carlo 

• 3-body correction improves overall but misses specificity



Cause of binding

Fragments Complex Di!erence (×20)
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• Asymmetry in broadening of the fluctuation 
frequency spectrum



Collective fluctuations

• Dipole fluctuations of charge density (not atomic nuclei) 

• Two fluctuation modes most contributing to the binding 
energy



Comparison to other bond types
a b

• π–π complexes: the most binding fluctuations are 
collective 

• Electrostatically bound complexes: disordered 
fluctuations



Nonlocal polarizability

αxx (r, r¨ , �)
• What dipole at point r is induced by field at point r’?



Polarization of charge density
• Lowering of fluctuation energies due to interaction 

leads to charge polarization (delocalization)

• Perturbation 
picture—virtual 
excited states are 
more delocalized



Polarization of charge density

• DFT electron density 
using xc functional with 
long-range correlation 
(Tkatchenko–Scheffler)

• Harmonic oscillator 
density with MBD



Summary
• van der Waals interactions can be efficiently and 

effectively described by quantum harmonic oscillators 

• In nanoscale π–π complexes, the coupled charge 
fluctuations are highly collective (c.f. pairwise models) 

• The harmonic oscillator description is not limited to 
binding energies
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