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Background

 Solution of the electronic Schrodinger equa-
tion of a given atomic system provides full
access to 1ts properties

« Computational cost of highly accurate
methods increases rapidly with system size,
making them unusable for molecules and
materials of practical interest

« Fundamental cause of the unfavorable scal-
ing 1s the electronic sign problem, which 1s
NP-hard (large determinant expansions)

1st quantization 2nd quantization

Summary & Outlook

« We develop PauliNet, a neural network ar-

chitecture designed for representing elec-
tronic wave functions in molecules that has

several physical constraints built in

 Variational quantum Monte Carlo provides
an efficient framework to train such a deep
neural network

e The flexibility of deep neural networks en-

ables reaching much higher accuracy in the
electronic energy than what is possible with
traditional variational ansatzes with the
same system-size scaling behavior

« We plan to exploit the superior scaling of
our approach to tackle molecular sizes that
are 1naccessible to traditional methods of
quantum chemistry

« We will incorporate ingredients from the
parallel work on FermiNet?

tens of minutes to a few hours on a single
GTX 1080 T1 GPU

e Error in the correlation energy decreases
almost monotonously as the training pro-
gresses from the 1nitial HF baseline level

« Only a few determinants are necessary to
substantially reduce the correlation energy
from a single-determinant ansatz

e The trained PauliNet generalizes well to re-
gions with low probability
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Variational quantum Monte Carlo

« Electronic Schrodinger equation i1s a sec-
ond-order differential eigenvalue equation

Eh//(rl, .. Iy) = Ey(ry,...,ry)
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« Electrons follow Pauli exclusion principle,
implying that valid electronic wave function
must be antisymmetric
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e Schrodinger equation can be reformulated
as a minimization problem using variational
principle
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PauliNet: Deep neural
network electronic wave

e PauliNet uses an adapted SchNet architec-
ture,? which 1s a graph neural network with
interactions between particles represented
as convolutions in real space

0 im0 (X0, (=) )

e The final electron many-body representa-
tions from SchNet are used as input into
vanilla deep neural networks for the Jas-
trow factor and backflow

Ji= (T xD) f = kp(x)

Approaching exact solu-
tion with few determi-
nants

Capturing strong corre-
lation

« Systems that exhibit strong correlation are
especially hard to describe without large
determinant expansions

« PauliNet can smoothly dissociate both the
H> molecule and the strongly correlated
linear hydrogen chain

— Hartree—Fock = DeepWF
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