Deep neural network solution of the electronic Schrödinger equation

Jan Hermann^{1,2}, Zeno Schätzle¹, and Frank Noé^{1,3,4}

¹FU Berlin, Department of Mathematics and Computer Science, Arnimallee 6, 14195 Berlin, Germany

- ²TU Berlin, Machine Learning Group, Marchstr. 23, 10587 Berlin, Germany
- ³FU Berlin, Department of Physics, Arnimallee 14, 14195 Berlin, Germany

⁴Rice University, Department of Chemistry, Houston, TX 77005, USA

Background

- Solution of the electronic Schrödinger equation of a given atomic system provides full access to its properties
- Computational cost of highly accurate methods increases rapidly with system size, making them unusable for molecules and materials of practical interest
- Fundamental cause of the unfavorable scaling is the electronic *sign problem*, which is NP-hard (large determinant expansions)

• Neural networks have been shown to tackle the exponential complexity of many-body wave functions efficiently for simpler quantum systems¹

Variational quantum Monte Carlo

• Electronic Schrödinger equation is a second-order differential eigenvalue equation

$$\hat{H}\psi(\mathbf{r}_1, ..., \mathbf{r}_N) = E\psi(\mathbf{r}_1, ..., \mathbf{r}_N)$$

$$\hat{H} := \sum_{i} \left(\frac{1}{2} \nabla_{\mathbf{r}_i}^2 + \sum_{I} \frac{Z_I}{|\mathbf{r}_i - \mathbf{R}_I|} \right) + \sum_{i < j} \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|}$$

• Electrons follow Pauli exclusion principle, implying that valid electronic wave function must be antisymmetric

$$\psi(\ldots,\mathbf{r}_i,\ldots,\mathbf{r}_i,\ldots)=-\psi(\ldots,\mathbf{r}_i,\ldots,\mathbf{r}_i,\ldots)$$

• Schrödinger equation can be reformulated as a minimization problem using variational principle

$$E_0 = \min_{\psi} E[\psi] \le \min_{\theta} E[\psi_{\theta}]$$

$$E[\psi] \equiv \int d\mathbf{u} \, \psi(\mathbf{r}) \hat{H} \psi(\mathbf{r})$$

• Quantum Monte Carlo (QMC) uses the fact that the square of a wave function is a probability distribution for the electrons and rewrites the energy functional as a statistical expectation value

$$E[\psi] \equiv \mathbb{E}_{\mathbf{r} \sim |\psi|^2} [E_{\text{loc}}[\psi](\mathbf{r})]$$

• Samples from the wave function are generated with Markov-chain Monte Carlo

Traditional wave function ansatzes

• Hartree–Fock (HF) method of quantum chemistry expresses uncorrelated electronic wave functions as a Slater determinant of molecular orbitals $\varphi_{\mu}(\mathbf{r}_i)$

$$\psi_{\mathrm{HF}}(\mathbf{r}) = \det[\varphi_{\mu}(\mathbf{r}_{i}^{\uparrow})] \det[\varphi_{\mu}(\mathbf{r}_{i}^{\downarrow})]$$

• Traditional QMC uses totally symmetric non-negative Jastrow factors to build correlations between electrons into uncorrelated wave functions, but these do not improve the *nodal surface*

$$\psi(\mathbf{r}) := \psi_{\mathrm{HF}}(\mathbf{r}) \mathrm{e}^{J(\mathbf{r})}$$

• Backflow transformation replaces one-electron coordinates with coupled coordinates of pseudoelectrons, which improves the nodal surface, but does not generalize well to larger systems

$$\mathbf{r}_i \mapsto \mathbf{r}_i + \mathbf{b}_i(\mathbf{r})$$

Summary & Outlook

- We develop PauliNet, a neural network architecture designed for representing electronic wave functions in molecules that has several physical constraints built in
- Variational quantum Monte Carlo provides an efficient framework to train such a deep neural network
- The flexibility of deep neural networks en-

Equivariant Interaction

 $\begin{bmatrix} \mathbf{r} \uparrow \\ N^{\uparrow} \times 3 \end{bmatrix} \begin{bmatrix} \mathbf{r} \mathbf{\downarrow} \\ N^{\downarrow} \times 3 \end{bmatrix}$

Electronic

trainable

Array

Neural Network

(trainable function)

Fixed function

Input

Array

 $M \times D_n$

Backflow

Wave function Ψ

PauliNet: Deep neural

network electronic wave

• Our proposed ansatz is of the Slater–Jas-

trow-backflow type, where both the Jas-

trow factor J and the backflow \mathbf{f} are deep

 $\psi_{\boldsymbol{\theta}}(\mathbf{r}) = e^{\gamma(\mathbf{r}) + J_{\boldsymbol{\theta}}(\mathbf{r})} \sum_{i} c_{p} \det[\tilde{\varphi}_{\boldsymbol{\theta}, \mu_{n}i}^{\uparrow}(\mathbf{r})] \det[\tilde{\varphi}_{\boldsymbol{\theta}, \mu_{n}i}^{\downarrow}(\mathbf{r})]$

Antisymmetry Standard technique from

quantum chemistry—Linear combination

of Slater determinants changes sign upon

exchange of any two rows (molecular or-

tireference Hartree-Fock solution into

PauliNet to ensure a good starting point for

the optimization and to increase data effi-

states satisfy cups conditions when an elec-

tron approaches other electron or a nucleus,

which are built into PauliNet through $\boldsymbol{\varphi}(\mathbf{r})$

We build in mul-

Electronic eigen-

 $\tilde{\varphi}_{\mu i}(\mathbf{r}) = \varphi_{\mu}(\mathbf{r}_i) f_{\boldsymbol{\theta}, \mu i}(\mathbf{r})$

N Number of electrons

M Number of nuclei

 N^{\uparrow} Number of spin-up electrons

 D_n Embedding dimension, nuclei

neural networks

bitals)

ciency

and $\gamma(\mathbf{r})$

Hartree-Fock baseline

Asymptotic behavior

 N^\downarrow Number of spin-down electrons

 $D_{m{e}}$ Embedding dimension, electrons

function ansatz

- ables reaching much higher accuracy in the electronic energy than what is possible with traditional variational ansatzes with the same system-size scaling behavior
- We plan to exploit the superior scaling of our approach to tackle molecular sizes that are inaccessible to traditional methods of quantum chemistry
- We will incorporate ingredients from the parallel work on FermiNet⁴

Jastrow factor and backflow from graph convolutional network

• To retain antisymmetry, the Jastrow factor and backflow neural networks must be invariant and equivariant, respectively, with respect to the exchange fo same-spin electrons

$$J(\mathcal{P}_{ij}\mathbf{r}) = J(\mathbf{r}) \qquad \mathcal{P}_{ij}f_{\mu i}(\mathbf{r}) = f_{\mu j}(\mathcal{P}_{ij}\mathbf{r})$$

• PauliNet uses an adapted SchNet architecture,² which is a graph neural network with interactions between particles represented as convolutions in real space

$$\mathbf{x}_{i}^{(n+1)} := \mathbf{x}_{i}^{(n)} + \boldsymbol{\chi}_{\boldsymbol{\theta}}^{(n)} \left(\left\{ \mathbf{x}_{j}^{(n)}, \left\{ \left| \mathbf{r}_{j} - \mathbf{r}_{k} \right| \right\} \right\} \right)$$

• The final electron many-body representations from SchNet are used as input into vanilla deep neural networks for the Jastrow factor and backflow

$$J := \eta_{\boldsymbol{\theta}} \left(\sum_{i} \mathbf{x}_{i}^{(L)} \right) \qquad \mathbf{f}_{i} := \kappa_{\boldsymbol{\theta}} \left(\mathbf{x}_{i}^{(L)} \right)$$

Approaching exact solution with few determinants

• PauliNet recovers 97% to 99.9% of the electron correlation energy after training for

tens of minutes to a few hours on a single GTX 1080 Ti GPU

- Error in the correlation energy decreases almost monotonously as the training progresses from the initial HF baseline level
- Only a few determinants are necessary to substantially reduce the correlation energy from a single-determinant ansatz
- The trained PauliNet generalizes well to regions with low probability

Capturing strong correlation

- Systems that exhibit *strong correlation* are especially hard to describe without large determinant expansions
- PauliNet can smoothly dissociate both the H₂ molecule and the strongly correlated linear hydrogen chain

Manuscript

arXiv:1909.08423

References

- (1) Carleo, Troyer, *Science* **355**, 6325 (2017)
- (2) Schütt et al., *J. Chem. Phys.* **148**, 241722 (2018)
- (3) Han et al., arXiv:1807.07014 (2018)
- (4) Pfau et al., arXiv:1909.02487 (Sep 2019)

Acknowledgements

Funding is acknowledged from the European Commission (ERC CoG 772230 "Scale-Cell"), Deutsche Forschungsgemeinschaft (CRC1114/A04, GRK2433 DAEDALUS/P04), the MATH+ Berlin Mathematics research center (AA1x6, EF1x2). J. H. thanks K.-R. Müller for support and acknowledges funding from TU Berlin (Project No. 10032745).