Modelling of surface properties of lamellar zeolites

Jan Hermann Michal Trachta Ota Bludský

Institute of Organic Chemistry and Biochemistry Academy of Sciences of the Czech Republic Flemingovo nám. 2, 166 10 Praha 6 Czech Republic

School of Molecular Sieves, Prague, 2013

DFT and dispersion

- DFT is a primary tool for modelling zeolites
- Describes covalent bonds and ions very well
- Dipoles interaction or hydrogen bonds might be inaccurate
- Dispersion forces are completely missing in standard DFT

Standard DFT not suitable for modelling physisorption

Many competing methods for including dispersion in DFT

vdW-DF¹

- Non-empirical method for including dispersion in DFT
- Expressed as interaction of electrons

- No need to parametrize ⇒ does not artificially (non-physically) treat errors not related to dispersion
- Slowly becoming a standard method, popular with physicists
- For small models less accurate than empirical methods

¹Phys. Rev. Lett **92**, 246401 (2004)

DFT/CC²

- Empirical correction scheme for DFT
- Expressed as atom-atom pair correction curves (Si-O, O-O,...)

- ► Trained on accurate energies calculated on small models ⇒ incorporates all kinds of errors (dispersion, electrostatics)
- Very accurate but can be numerically instable
- Alternation of Si and O atoms in zeolites complicates training

²J. Chem. Phys **128**, 114102 (2008)

vdW-DF/CC

- "best of both methods"
- Single correction curve for all atom—atom pairs weighed by vdW-DF

- Uses vdW-DF as a physical constraint to avoid artefacts
- Uses DFT/CC-like training on small models for high accuracy
- Expectations: more accurate than vdW-DF, more robust than DFT/CC

Studied systems

- Interaction of small molecules with zeolitic lamellas
- ▶ IWW, IWV, UTL, ITH, IWR, ITR
- CH₄, CO, CO₂, H₂, N₂, H₂O
- Example case: UTL
- Valleys between silanol islands
- Four topological sites

Model systems

- Highly accurate energies by QM ab-initio methods
- 1T model used for parametrization
- 2T model used for verification

Results

Geometries optimized at vdW-DF2 level

vdW-DF2 energies [kJ/mol]						vdW-DF/CC correction					
	А	В	С	D			А	В	C	D	
CH_4	-24.3	-25.9	-21.6	-16.1		CH_4	5.7	2.9	3.0	1.3	
CO	-29.7	-24.4	-24.2	-15.1		CO	3.2	-3.2	1.9	1.4	
CO ₂	-47.1	-33.5	-31.2	-26.8		CO ₂	-4.0	3.0	-2.0	1.2	
H_2	-12.2	-12.3	-9.6	-8.2		H₂	2.4	2.4	2.1	1.5	
H_2O	-68.1	-47.3	-53.9	-29.3		H₂O	4.9	4.1	3.5	4.5	
N_2	-28.0	-23.7	-23.2	-17.4		N_2	2.9	2.2	1.4	2.2	

- Mean absolute percentage correction: 12%
- Mean absolute correction: 2.9 kJ/mol

Conclusions

- Standard DFT cannot be used for physisorption
- vdW-DF has not chemical accuracy (errors ~5 kJ/mol)
- We have devised an empirical scheme for correcting vdW-DF
- Estimated accuracy is less than 1 kJ/mol

We thank GAČR for funding (grant No. P106/12/G015, Project of Excellence InDeNAC, www.zeolites.cz). We also thank Petr Nachtigall from Faculty of Sciences, Charles University in Prague for collaboration.