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Abstract

Machine learning and specifically deep-learning methods have outperformed human capabilities in many pattern

recognition and data processing problems, in game playing, and now also play an increasingly important role in scientific
discovery. A key application of machine learning in the molecular sciences is to learn potential energy surfaces or force fields
from ab-initio solutions of the electronic Schrodinger equation using datasets obtained with density functional theory, coupled
cluster, or other quantum chemistry methods. Here we review a recent and complementary approach: using machine learning
to aid the direct solution of quantum chemistry problems from first principles. Specifically, we focus on quantum Monte Carlo
(QMC) methods that use neural network ansatz functions in order to solve the electronic Schrodinger equation, both in first and
second quantization, computing ground and excited states, and generalizing over multiple nuclear configurations. Compared
to existing quantum chemistry methods, these new deep QMC methods have the potential to generate highly accurate solutions
of the Schrodinger equation at relatively modest computational cost.

1 Introduction

In the past decade, machine learning (ML) has made inroads into
many areas of the physical sciences (Carleo et al. ), often out-
performing more traditional computational methods (Deringer et
al. ; Jumper et al. ) or offering entirely new approaches
to solve scientific problems (Huang & von Lilienfeld ; Noé
et al. ). Quantum chemistry (QC) has been among the first
fields to have been affected by this revolution (Noé et al. ;
Tkatchenko ; von Lilienfeld & Burke ). Most applica-
tions of ML in QC have been concerned with supervised learning
of molecular properties from molecular structure (Dral ), ei-
ther across conformational (Unke et al. ) or chemical space
(von Lilienfeld et al. ), as well as with unsupervised learning
for the generation of novel molecules (Bian & Xie ). These
methods all require a pre-existing dataset of molecules and their
properties as an input, typically obtained with standard methods
of QC such as density functional theory (Jones ) or cou-
pled cluster theory (Bartlett & Musiat ). In these scenarios,
ML accurately approximates a given method of QC at vastly in-
creased computational efficiency. This approach has been already
reviewed in other works cited above. In contrast, the current re-
view focuses on the complementary use of ML as an ab-initio
technique in QC, which requires no external data and instead re-
covers molecular properties from first principles. Here, ML is
“integrated” into QC, with the goal of arriving at ab-initio meth-
ods with a more favourable accuracy—efficiency trade-off than tra-
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ditional QC methods.

The goal of computational chemistry is to predict properties
of known molecules and to design molecules with desired prop-
erties. Most molecular properties are determined by the be-
haviour of the electrons, so QC methods attempt to approximate
the Schrodinger equation for electrons in molecules. Tradition-
ally, QC methods are divided into ab-initio and semi-empirical
methods, where the former have no fitted parameters determined
from external data, whereas the latter do. Methods that do not
use quantum mechanics at all (such as force fields) are called em-
pirical and are typically not considered part of QC, although this
view may be changing with the advent of principled and accu-
rate ML-based empirical methods. It is useful to cast these three
categories of methods in the light of ML terminology (Fig. 1a).

ML can be roughly divided into supervised, unsupervised, and
reinforcement learning. In supervised learning the ML model
learns to predict the labels (outputs) of the data (inputs) from a
given dataset so as to minimize the difference between the pre-
dicted and reference labels. By identifying the inputs with molec-
ular structures and the outputs with molecular properties, all
semi-empirical and empirical methods of QC fit into supervised
learning, but using mostly relatively simple and physically mo-
tivated functional forms rather than the more general and highly
flexible functions typical for ML. Vice versa, the many recent
successful supervised ML models that predict energies or other
molecular properties based on QC training data can be classified
as empirical methods (Behler ; Deringer et al. ; Musil
etal. ; Unke et al. ). Unsupervised learning is concerned
with unlabelled data, and the general task is to learn the underly-
ing probability distribution that would generate a given dataset.
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Fig. 1 | Quantum chemistry and machine learning. (a) Machine learn-
ing disciplines and their dependence on data can be mapped to disciplines
in quantum chemistry. This work reviews the use of machine learning in
ab-initio quantum chemistry, where the only input to machine learning is
the Schrodinger equation itself. This approach uses self-generated data,
rather than relying on external data. The closest analogue in machine
learning is reinforcement learning with self-play, which substitutes data
from an external environment with data generated by the agent, though
in many other respects the two approaches are distinct. (b) Trade-off
between computational efficiency and accuracy in quantum chemistry
methods. Accuracy of electronic structure methods against the asymp-
totic scaling of their computational cost with system size, N. Popular
methods, such as density functional theory, are outliers from the general
trend.

Examples in chemistry include generative models for structural
formulas (Gémez-Bombarelli et al. ) as well as full 3D struc-
tures of molecules (Hoogeboom et al. ; Noé et al. ), and
in physics the estimation of quantum states from measurements,
known as quantum tomography (Torlai et al. ). Finally, in re-
inforcement learning, the ML model (also referred to as an agent
is able to interact directly with its environment, rather than to just
passively receive data. Here, the aim is for the agent to learn a
policy for how to interact with the environment so as to maximize
a long-term reward (Sutton & Barto ). Reinforcement learn-
ing is behind some of the most prominent successes of ML such as
playing games at a superhuman level (Mnih et al. ; Silver et
al. ; Tesauro ) or the control of plasma in tokamaks (De-
grave et al. ). In certain settings the agent can self-generate
data by treating its own policy as the environment. This is known
as self-play, and has been the basis for many advances in sym-
metric games (Heinrich et al. ; Silver et al. ). Although
there are many key differences, this is the branch of ML concep-

tually most similar to ab-initio QC, in the sense that no external
data other than the rules of the system or game are required for
either.

In the traditional picture, one moves from empirical to ab-
initio methods by retaining more of the first-principles physics.
Similarly, there is a general trend for ML models in chemistry
to encode an increasing amount of molecular physics. This in-
cludes physical constraints such as energy conservation (Chmiela
et al. ), invariance and equivariance of molecular proper-
ties with respect to rotation, translation, or exchange of indis-
tinguishable particles (Behler & Parrinello ; Schiitt et al.

), as well as other physical concepts such as many-body ex-
pansions (Drautz ) or even surrogate quantum-mechanical
models (Kirkpatrick et al. ;Lietal. ; Schiitt et al. ).
Similar considerations can be made for the problem of ab-initio
learning of solutions to the electronic Schrodinger equation intro-
duced here and we will discuss different strategies throughout the
review.

The Schrodinger equation is an eigenvalue problem that can be
equivalently formulated via several variational principles—its so-
lutions, the eigenstate wavefunctions and energies, can be found
by searching for stationary points of certain functionals over the
space of all physically admissible wavefunctions. Importantly,
the ground state of a molecule can be found by minimizing the
energy expectation value of a wavefunction. This principle un-
derlies many ab-initio QC methods, and also the methods in this
review, as such a variational principle naturally defines a ML
problem—the eigenstates (such as the ground state) are repre-
sented as a neural network and the parameters of that network are
obtained by minimizing the variational electronic energy. The re-
viewed methods differ in the particular form of the neural-network
ansatz used, as described below.

Section 2 briefly reviews the components of electronic struc-
ture theory necessary for the development of the ML methods to
be discussed later on. The electronic structure problem is mapped
to ML in Section 3, which is followed by a review of the ab-initio
ML methods for QC formulated in real space and in a discrete
basis in Sections 4 and 5, respectively. The review is concluded
in Section 6.

2 Electronic structure

2.1 Schrodinger equation

QC aims at finding approximate solutions of the electronic Schro-
dinger equation that strike a good balance between accuracy and
efficiency (Piela ) (Fig. 1b). The non-relativistic electronic
Schrddinger equation within the Born—Oppenheimer approxima-
tion for a given molecule specified by the charges and coordinates
of the nuclei, Z;, Ry, is a second-order differential equation for
the wavefunction, y(ry, ... ,ry), which is a function of the coor-
dinates of N electrons (Fig. 2a):

Hy(r,...,ry) = Ey(r,,...,Ty), (1)
. zZ 1
. 1 <2 1
H = —Vv2-yY —L )+ Y ——— (D
Z( 2 ; |ri_RI|> ; |r; —x;l

An alternative formulation of the Schrédinger equation uses the
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Fig. 2 | Electronic structure problem and its neural-network solutions. (a) The problem is fully specified by the geometry of a molecule and the
electronic Schrodinger equation. (b) Only fully antisymmetric wavefunctions are admissible as solutions due to the Pauli exclusion principle and (c)
these are often represented with Slater determinants. (d,e) Solutions formulated in first quantization use antisymmetric neural networks to represent
the wavefunction directly in real space. (f) Second quantization transfers the antisymmetry to a fixed finite basis, enabling the use of vanilla neural

networks.
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Instead of solving Eq. (1), the ground-state (lowest-energy) so-
lution can be found by minimizing this energy expectation value
with respect to all possible wavefunctions (variational principle),

E = n}yin(f{),l,. “

2.2 Antisymmetric wavefunctions

Electrons are fermions, and as such their wavefunction must be
antisymmetric with respect to exchange of any two electrons.
This cardinal feature of electronic wavefunctions permeates the
whole of QC. In general, electrons also possess spin coordinates,
s; € {1,1}, but the nonrelativistic Hamiltonian does not operate
on spin, so the spin coordinate of each electron can be considered
fixed. To simplify the presentation here (for full treatment, see
Foulkes et al. , Sec. IV.E), we take advantage of the fixed
spin coordinates, so the spatial wavefunction must be antisym-
metric only with respect to the exchange of same-spin electrons,
i.e., whens; = s; (Fig. 2b),

u/(...,r,-,...,rj,...) = —w(...,rj,...,r,-,...). (®)]

By far the most common way to form antisymmetric wave-
functions in QC is as antisymmetrized products of single-electron
functions (orbitals), ¢;(r). These products can be written as de-
terminants of an N X N matrix, ¢;(r;), formed by putting N elec-
trons into N orbitals, and are referred to as Slater determinants
(Fig. 2¢):

¢1(ry)  Pi(ry) P1(ry)
Dy = [P0l ate)|
N. . . .
on () Pn(ry) dn(ry)

(6)

When interpreting ¢;(r;) as the j-the component of a N-
dimensional feature vector for the i-th electron (using ML par-
lance), ¢(r;), a Slater determinant is in fact the only antisym-
metric function of N feature vectors that is linear in every one
of them, making it a natural choice. Alternative antisymmet-
ric forms exist, such as the Pfaffian (Bajdich et al. ) or the
Vandermonde determinant and its generalizations (Acevedo et al.

; Han et al. ), but these are far less common and we will
not discuss them here.

Slater determinants formed from different orbitals can be fur-
ther mixed in a linear combination without breaking the antisym-
metry (Fig. 2c). In fact, this simple technique is the powerhouse
behind all the high-accuracy methods of QC, yet it s also its bane,
because the number of Slater determinants required to achieve a
given accuracy rises exponentially with the number of atoms in
most cases. For fermionic wavefunctions there is no known gen-
eral approach to effectively reduce the search space from this ex-
ponential regime without sacrificing accuracy. However, QC has
produced many methods that achieve excellent approximations
for specific molecules and materials of practical interest. The cost
of these highly accurate methods is generally less than exponen-
tial, but nevertheless increases rapidly with system size (Fig. 1b).

2.3 Variational wavefunction methods

An important class of QC methods derives directly from the vari-
ational principle (Eq. 4), by assuming a certain wavefunction
ansatz, y(-; ), parametrized by €. Minimizing the energy of this
ansatz with respect to @ then always yields an upper bound for the
exact ground-state energy,

E= n}}n(H}w < mein(H)w(.;e). @)

The bound becomes tighter as the expressiveness of the ansatz is
improved.

One can distinguish two strategies to construct the ansatzes.
First, traditional QC uses relatively simple forms, such that the
integral of Eq. (3) can be evaluated analytically, which drasti-
cally simplifies the minimization problem (Piela ; Szabo &
Ostlund ). Second, quantum Monte Carlo (QMC) enables



Box 1 | First and second quantization

Computational methods for the electronic Schrodinger
equation can be divided to first-quantized approaches in
real space and second-quantized approaches in a discrete
basis. In first quantization, one works with the individ-
ual electrons and their coordinates directly in real space
(r; €R3,i=1,...,N)asinEq. (1),

|l[/> = Jdrldrz--- l[/(l'],rz, ~--)|rlr2”'>’

Here, y must be an antisymmetric function, which speci-
fies which electrons occupy which coordinates, while the
many-electron basis states (|r;r, ---)) are ordinary non-
symmetric (Cartesian) product states.

In second quantization, one has to first introduce a dis-
crete basis (in practice finite), labelled by k, which then
enables one to work with preformed antisymmetric many-
electron basis states (Slater determinants), and rather than
specifying which electrons occupy which one-electron
states, the occupation numbers (n, € {0,1}, Y, n, = N)
specify which one-electron states are occupied without
any reference to a particular electron,

W)= D Wy myme-s).

nyny -

Here, y,, ,,,... can be an arbitrary tensor without antisym-
metry, which is instead encoded in the many-electron ba-
sis states |n n, --+).

This ability to push the antisymmetry from the wave-
function object to the many-electron basis is the main
advantage of second quantization, at the cost of having
to commit to a particular discrete basis. But regardless
of the computational framework, either the wavefunction
object itself (in first quantization) or the many-electron
basis (in second quantization) consists of Slater determi-
nants, and in high-accuracy methods their number grows
rapidly with system size.

n=(0,1,1,0,1)

—et—+—1—= K ) Y

First and second quantization. Illustration on N = 3 electrons
in 1D and a finite basis of size 5. * = (r(, I, I3).

the use of arbitrarily complex ansatzes at the cost of having to
do the integral evaluation and minimization stochastically (Becca
& Sorella ). The latter is a natural framework to incorporate
neural networks, and we introduce it in more detail in Section 3.1.

Here we introduce three ansatzes for electronic wavefunctions
of the first (traditional) kind, since they serve as scaffolding for
the neural-network ansatzes of Sections 4 and 5. We also briefly
discuss how they relate to other popular QC methods.

Hartree-Fock Perhaps the simplest nontrivial ansatz in QC is
the single Slater determinant of Eq. (6), where the orbitals ¢;(r)
are considered as free parameters. Optimized variationally, this
ansatz leads to the so-called Hartree—Fock (HF) method. In prac-
tice the orbitals are linearly expanded in a fixed finite one-electron
basis, @, (r), k =1, ..., K, with K ~ N in most cases:

Eyp = n(})in E[det ¢,(r)] ~ rginE[det Yk Crjor)].  (®)
J kj

The use of a finite basis set turns the functional optimization prob-
lem of Eq. (8) into a computational problem whose cost scales
with the fourth power of the number of basis functions, O(K4),
assuming a naive implementation. On its own, the HF ansatz is
expressive enough to describe much of chemistry qualitatively,
but not always and certainly not quantitatively. However, it can
be considered a starting point for most wavefunction-based QC
methods.

Density functional theory (DFT) is not such a method, relying
instead on an in-principle exact mapping of the ab-initio Hamil-
tonian (Eq. 2) to a mean-field-like problem, which can be solved
exactly with a single Slater determinant (Jones ; Teale et
al. ). However, the variational principle does not hold in
DFT because the exchange-correlation contributions to the en-
ergy functional are not known exactly and must be approximated
in practice. From here on, we will stay within the variational prin-
ciple and instead focus on increasing the expressiveness of the HF
ansatz.

Configuration interaction The HF ansatz can be straightfor-
wardly extended by forming multiple Slater determinants from
different sets of orbitals and considering their linear combination
(Fig. 2¢),

Wy, oty = e, Dy (B, Ty). 9)
p

When the orbitals of each determinant are pooled from a larger
superset of (mutually orthogonal) fixed orbitals of size M > N,
and the only free parameters are the linear coefficients of the deter-
minants, the ansatz is called configuration interaction (CI). One
of the appeals of the CI ansatz is that its Slater determinants can
be considered a many-electron antisymmetric basis and labelled
using the occupation numbers of the one-electron states. This
so-called second quantized formalism has many convenient prop-
erties for computation (see Box 1). The simplest version of CI,
called full CI (FCI), considers all (%) possible Slater determi-
nants and is exact within the chosen finite one-electron basis. In
the usual case when M ~ N, however, the computational effort
scales exponentially with N, which makes FCI applicable only
to the smallest molecules. Ways to tackle the exponential scal-
ing include fixed truncation of the CI expansion or its “compres-
sion” through analytical means (coupled cluster theory, Bartlett &
Musiat ; matrix product states, Chan & Sharma ), de-
terministic pruning (selected CI, Huron et al. ), or stochas-
tic sampling (FCI-QMC, Booth et al. ). Section 5 explores
a novel way of “compressing” the CI expansion through neural
networks.

Beyond fixed bases The effectiveness of the CI ansatz depends
on the choice of the fixed molecular orbitals ¢;(r) from which
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Fig. 3 | Variational Monte Carlo with neural networks. Electron po-
sitions, r;, or orbital occupation numbers, n,, describe an electron con-
figuration which is an input to the wavefunction, y, represented by a
neural network parametrized with 8. The wavefunction is used in two
ways: first, to sample new electron configurations which provide new in-
put to the neural network (yellow), and second, to evaluate the electronic
energy, which is minimized by varying the network parameters (blue).

the Slater determinants D¢p (ry,...,ry) are built. A natural ex-
tension of CI allows both the orbitals and the CI expansion coef-
ficients ¢, to vary during the variational minimization. Such an
ansatz of two stacked linear combinations (Egs. 8 and 9) is harder
to optimize but much more expressive. The most common vari-
ant is to consider all (%,, ) Slater determinants formed by letting
N’ < N electrons occupy a space of M’ < M orbitals, while
the remaining N — N’ electrons occupy a fixed set of inactive
obitals. This is called the complete active space self-consistent
field (CASSCF) method (Olsen ). Due to the larger varia-
tional freedom, a CASSCF ansatz typically requires many fewer
determinants than a CI ansatz of comparable accuracy.

But CASSCF and even FCI are still limited by the fixed one-
electron basis used to form the molecular orbitals (Eq. 8): FCI is
only exact in the complete basis set limit, which in practice can-
not be reached for any but the smallest molecular systems. An
extension of the CASSCF ansatz would allow not only the one-
electron orbitals but also the one-electron basis functions to vary.
The stacked structure of such an ansatz would be reminiscent of
deep neural networks, and Section 4 explores the culmination of
this line of thought by incorporating actual deep neural networks
into the ansatz. This removes any a priori limitations on the ex-
pressiveness. By making each individual determinant maximally
expressive, such ansatzes further reduce the number of determi-
nants required to reach a given accuracy.

3 Machine learning for electronic Schrodinger equation

3.1 Mapping quantum mechanics to machine learning

A ML problem and its solution are specified by the model, its
inputs and outputs, the data, and the optimization criterion (loss
function). In this regard, solving the Schrodinger equation with
the variational principle amounts to the following ML problem
(Fig. 3). The neural network (Section 3.2) represents a wave-
function, which accepts electron coordinates (first quantization)
or occupation numbers (second quantization) as input and out-
puts the wavefunction value. The loss function is the energy ex-

Box 2 | Variational Monte Carlo

Optimization of wavefunctions with neural networks nat-
urally leads to the variational Monte Carlo (VMC) frame-
work. First, Monte Carlo integration of Eq. (3) can
handle arbitrarily complicated ansatzes for which ana-
lytical integrals are not available. Second, VMC sam-
ples these integrals stochastically which naturally com-
bines with the stochastic gradient descent used for op-
timizing neural networks. In traditional QC, VMC has
been used extensively with real-space first-quantized ap-
proaches (Foulkes et al. ) and more recently in
the discrete-basis second-quantized setting (Neuscam-
man ; Sabzevari & Sharma ).

The expectation value of any operator, such as the
Hamiltonian (Eq. 3), can be written as a Monte Carlo in-
tegral over a continuous or discrete basis, {|x)},

x|y )2 (x| H |y)
(x|w)

(H), = L (wlw) = Exixiy)2 [Eloc(x)] .
Here, the expectation value is obtained as an expected
value of a “local” energy E,., local in the sense that it
is defined for every basis element x.

A straightforward and generally applicable way to ob-
tain the samples is Markov-chain Monte Carlo (MCMC).
MCMC is an iterative procedure, in which a new sample
point, X/, is produced from a current one, X, by making a
proposal step with probability g(x|x), and then accepting
or rejecting the proposal with probability

o < I(X’Iw)lzg(XIX’)>
p=min| 1, ——— | .

" I(xlw) e (x'[x)

The resulting Markov chain then samples | (x| )|?. Vari-
ants of MCMC differ in the construction of the proposal
steps and g, and include the simplest Metropolis algo-
rithm (g(x’|x) = g(x|x’)) as well as more sophisticated
flavours such as Langevin Monte Carlo.

The VMC formula for the expectation value is exact in
the limit of infinite sample size, N' — oo, butin practice it

incurs a statistical error proportional to v/ Var[ Ej,.]/N .
While 1/ \/ﬁ converges slowly with sample size, VMC
has the great benefit that the as the ansatz converges to the
exact eigenstates, the local energy converges to a constant
(the exact energy), and as such its variance vanishes and
so does the statistical sampling error.

pectation value corresponding to this wavefunction. The inputs
are sampled from the probability distribution given by the square
of the wavefunction represented by the current neural network,
and the Hamiltonian operator is used to obtain an estimate of the
loss function from the samples. The parameters of the network,
and thus the wavefunction, are then modified to minimize the
loss function. Except for the representation of the wavefunction
as a network, this is the regular variational Monte Carlo (VMC)
framework (Box 2). The optimization methods used (Box 3) are



Table 1 | Dictionary of electronic structure and machine learning.

Electronic structure Machine learning

Wavefunction
Natural orbital
Stochastic reconfiguration
Hartree—Fock
Diffusion Monte Carlo

Probability distribution
Marginal distribution
Natural gradient descent
Mean-field variational Bayes
Particle filtering;
Sequential Monte Carlo

also fairly conventional, although adapted to a neural network
context. This straightforward correspondence between the Schro-
dinger equation and ML led to the introduction of similar concepts
on both sides, albeit known under different names (Table 1).

The applicability of deep learning for quantum-mechanical cal-
culations was first realized and exploited by Carleo & Troyer
( ) for the case of spin lattices in one and two dimensions.
Their approach, known as Neural Quantum States (NQS), has
since been applied to many different quantum systems (Adams
et al. ; Astrakhantsev et al. ; Nomura et al. ; Saito

). In essence, this review is concerned with the extension of
this approach to electrons in molecules.

3.2 Deep learning

The standard practice in ab-initio QC today is in some ways anal-
ogous to the state of computer vision before the rise of deep learn-
ing. Prior to 2012, the best pipelines for large-scale image recog-
nition consisted of a combination of hand-designed features and
simple ML models (Perronnin et al. ). A single deep con-
volutional neural network trained end-to-end was able to cut the
recognition error in half relative to these systems (Krizhevsky et
al. ), and since then deep neural networks have dominated
computer vision research.

In ab-initio QC, ground-state solutions to the Schrodinger
equation are usually represented by a wavefunction ansatz with
a relatively simple functional form, and parameters are usually
fit through a mix of procedures (fixed-point iteration, variational
optimization) rather than a unified end-to-end estimation of all pa-
rameters simultaneously. The development of deep QMC meth-
ods is driven by the hope that the use of neural networks will sig-
nificantly increase the expressiveness of wavefunction ansatzes,
enabling large leaps in accuracy as in image recognition. To ap-
preciate how and why deep neural networks can be usefully ap-
plied in QC, a brief review of their application in artificial intelli-
gence is necessary. For a thorough review of the history of deep
learning, see Schmidhuber ( ), and for a review of the funda-
mental concepts in deep learning, see LeCun et al. ( ).

Neural networks date back to the very beginning of computer
science (McCulloch & Pitts ), and their modern form origi-
nates with the single perceptron “unit” (Rosenblatt ), which
produces as output a non-linear function of the sum of a constant,
known as the bias, and a linear combination of its inputs. The
non-linear function rises from zero to one as its input increases,
mimicking the activation function of a biological neuron. When
many such units are assembled in parallel to form a “layer,” and
several layers are computed serially, taking the output from one

Box 3 | Optimizing neural-network ansatzes

Up to the statistical error, the VMC expectation value for
the energy (Box 2) obeys the variational principle (Eq. 4).
VMC exploits this by varying a parametric wavefunction
ansatz yy so as to minimize the energy. For a sufficiently
expressive ansatz, the variational energy will eventually
approximate the ground state energy of Eq. (1) and the
ansatz will approximate the ground state wavefunction V.
The most straightforward optimization method is gra-
dient descent, where the parameters are iteratively up-
dated as
0E(0)
00

with learning rate # > 0. The energy gradient is given by

0—0—-—n——-

A

H) - (H)(0}),

where
dlny(x;0)

00,

is an operator representing the logarithmic derivatives of
the wavefunction. This gradient can be efficiently esti-
mated using Monte Carlo integration (Box 2).

In some cases the optimization can be sped up and
made more stable with higher-order methods, such as the
stochastic reconfiguration (SR) scheme (Sorella )
SR takes the correlation between individual variational
parameters into account by introducing the quantum geo-
metric tensor .S’

O, (x) =

Sirr = (0, 0yr) = (O X Oy).

The update rule is then modified to

1 0E©)

6 < 0—nS
YT T

The SR scheme approximates an imaginary-time evolu-
tion where each iteration tries to best approximate the
state e |y). SR is similar to the natural gradient de-
scent algorithm (Amari ) that is well-known in the
ML community, and S can be interpreted as a quantum
generalization of the Fisher information matrix (Ay et al.

). In some cases, it is convenient to approximate the
quantum geometric tensor S using the Kronecker-factored
approximate curvature (KFAC) approach (Martens &
Grosse ).

layer as the input to the next, the resulting multi-layer percep-
tron (MLP) can, in theory, represent any smooth function to ar-
bitrary accuracy given enough units (Hornik et al. ). How-
ever, actually fitting or learning a set of parameters that matches
any given function is different matter. A form of gradient de-
scent utilizing derivatives computed using backpropagation, or
reverse-mode automatic differentiation (Linnainmaa R ;
Werbos ), was found to be effective for training neural net-
works (Rumelhart et al. ). This led to a wave of enthusiasm



for neural networks, which eventually faded as several issues were
discovered, such as the infamous “vanishing gradients” and get-
ting stuck in local minima.

Several factors were instrumental in rehabilitating neural net-
works under the banner of “deep learning”: a combination of al-
gorithmic advances (Glorot & Bengio ) and the use of mod-
ern GPU hardware (Hooker ) made the computations much
faster, and the resulting ability to train larger networks made is-
sues with local minima less severe (Choromanska et al. ;
Dauphin et al. ). Furthermore, deep neural networks with
the help of stochastic gradient descent can be applied straightfor-
wardly and efficiently to large datasets, unlike other ML models
(Bottou & Bousquet , ). Finally, empirical successes
like winning the ImageNet Large Scale Visual Recognition Chal-
lenge (Russakovsky et al. ) helped legitimize deep learning
research and generate excitement among researchers.

Today, the barrier to entry for developing and training deep
neural networks is quite low, thanks to a mature ecosystem of
software libraries for numerical computing with automatic dif-
ferentiation and hardware accelerators (Abadi et al. ; Brad-
bury et al. ; Paszke et al. ). However, actually achieving
good performance from a deep learning model still requires some
finesse and application of various heuristics. It is safe to say thata
significant amount of the practice of deep learning remains more
art than science. The good news is that once effective heuristics
for a particular problem domain have been developed, these same
heuristics can often be applied with little modification to other
problems in the same domain.

3.3 Neural network architectures

The starting point for most neural networks is the multi-layer per-
ceptron (MLP), formed as a composition of L layers,

MLP(x) = fLoftlo 0 f1(x),

ff@=r(Wz+b"), (10
where f is some non-linear activation function, and W’ and b?
are the matrices of weights and vectors of biases to learn. While
a vanilla MLP is capable of representing arbitrary functions, the
real power of neural networks comes from more sophisticated ar-
chitectures. Many of these architectures are designed to encode
some particular invariance or equivariance—that is, when the in-
put to the network is transformed in a particular way, the output
should either be unchanged or should transform in a correspond-
ing way. For instance, the weights in a layer of a convolutional
neural network (ConvNet) (LeCun et al. ) are restricted to be
a discrete convolution operator, which constrains each layer to be
translation-equivariant, a natural constraint for image recognition,
and also dramatically reduces the number of possible weights in
a layer.

Equivariance to permutation is another frequently useful prop-
erty, and one that is especially important in real-space approaches
to representing electronic wavefunctions (see Section 4). A sim-
ple permutation-equivariant layer first proposed by Shawe-Taylor
( ) can be constructed by applying the same transforma-
tion to each input and summing the results. More sophisticated
permutation-equivariant layers are used by models like the Trans-
former (Vaswani et al. ) or SchNet (Schiitt et al. ). Many

of these equivariant layers can be unified in a conceptual frame-
work based around the language of geometry and group theory,
wherein the choice of transformation to be equivariant to leads
naturally to recipes for constructing the appropriate neural net-
work layers (Bronstein et al. ).

Another class of neural network architectures, which have been
influential as wavefunction ansatzes, are restricted Boltzmann
machines (RBMs) (Hinton & Salakhutdinov ). These were
originally developed for unsupervised learning, but in the VMC
setting considered here they lead to a simple deterministic ex-
pression for the log probability that closely resembles a one-layer
MLP. Despite their early popularity, RBMs have been largely
eclipsed in the Al community by other methods for unsupervised
learning, such as variational autoencoders (Kingma & Welling

), generative adversarial networks (Goodfellow et al. ),
normalizing flows (Rezende & Mohamed ), autoregressive
models (van den Oord et al. ,b), and diffusion models (Sohl-
Dickstein et al. ). In fact, some of these newer models have
started to have an impact as neural network wavefunction ansatzes
for spin systems. Examples are deep autoregressive quantum
states (Sharir et al. ), convolutional neural networks (Choo
et al. ), recurrent neural networks (Hibat-Allah et al. ),
and normalizing flows (Xie et al. ).

4 Electrons in first quantization

One approach to studying the electronic problem with deep learn-
ing is to work with parameterized many-body wavefunctions
in first quantization, w(r;0). Here v stands for the N-tuple
of electron coordinates, ry,r,, ..., Iy, and sampling is realized
over electronic positions r (Box 2). The antisymmetry con-
straint (Eq. 5) must be imposed in y to avoid collapsing onto
a lower-energy bosonic state. A commonly adopted form is
w(r;0) = S(r;0) X A(r; 0), where the first factor is symmet-
ric (or “bosonic”) under exchange of electron coordinates and the
second factor carries the necessary antisymmetry. The simplest
and most common approach is to build the antisymmetric part
of the wavefunctions using Slater determinants (Eq. 6). As dis-
cussed in Section 2, single Slater determinants with fixed orbitals
have limited expressiveness and many such determinants need to
be combined to achieve high accuracy. A natural generalization of
a sum of fixed-orbital Slater determinants is the commonly-used
Slater—Jastrow wavefunction

Phr,:0) Ph(ry:0)
CTETAUE) W '

: (11)
k ¢/1(V(1'1§0)

oK (rn:0)

where the Jastrow factor, J({r};0) constitutes the symmetric
(“bosonic”) part of the state and typically contains one- and two-
body (and in many cases higher-order) parameterized correla-
tions. The set notation, {r} = {r(,...,r,}, indicates that J does
not depend on the order of the electron coordinates. The determi-
nants in Eq. (11) are typically replaced with the product of spin-
up and spin-down determinants (Foulkes et al. ). Separating
the up- and down-spin determinants improves computational effi-
ciency, simplifies the implementation, and makes it easier to han-
dle the electron-electron cusps, while leaving expectation values
of spin-independent operators unchanged.
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More flexible parametric forms can be obtained leveraging the
approximation power of artificial neural networks. In the follow-
ing, we discuss neural-network-based strategies to parameterize
these forms.

4.1 Discrete space

The first applications of neural networks to electronic systems
were for electrons moving in discretized space, as realized, for ex-
ample, in the 2D Hubbard model of strongly-interacting electrons.
In the following, for simplicity, we discuss the case of N spinless
electrons in M lattice sites, and denote with I/(r) € [1, M] the
discrete lattice index corresponding to electron position r. The
extension to the spinful case will be considered more in detail

when discussing continuous space later on. The symmetric part
S(r; 0) can be readily parameterized with a strategy closely re-
lated to NQS for spins:

S(r;0) = g(n(r); 0), (12)

where n(r) is the unique occupation number representation cor-
responding to the electronic positions ¥ and g represent a generic
function which could be represented by a neural network. Since
the occupation numbers n(r) are invariant under permutation of
the electron positions, g(n(r)) is also symmetric under exchange.
Any of the NN architectures also adopted for spin systems (Car-
leo & Troyer 2017) or lattice bosons (Saito 2017) can be used
to represent the symmetric part S. Early works on the Hub-
bard model adopted positive-definite RBM-based parameteriza-



tions of S(r; 0) (Nomura et al. ), while more recent works
have adopted deep-network parameterizations allowing for sign
changes (Stokes et al. ).
The simplest parameterization for the antisymmetric part,
A(r; 0), is again a Slater determinant
¢(r;;0) $i(ry;0)
A(r;0) = : : , (13)
dn(ry;0) dn(ry:0)
where the matrix ® € CN*M of discrete orbitals ¢, (r )= <1>,.J(rj)
holds the variational parameters to be optimized. This approach,
however, has the important drawback of not providing enough
variational flexibility, since it effectively fixes the anti-symmetric
part to a mean-field reference solution.

Neural backflow A significant improvement is obtained by
considering a many-body backflow transformation of the orbitals
(Feynman & Cohen ; Kwon et al. ). In this variational
form, the matrix of one-electron orbitals @ is promoted to a pa-
rameterized many-electron function depending on all the occupa-
tion numbers:

®,(8) = ©,;(8) + A (n(r); 0). (14)
where A is a correction to the single-particle orbitals @. In
physics-inspired parameterizations, A is typically taken to be a
simple function of the electronic occupation numbers (Tocchio
et al. ). The neural backflow method (Luo & Clark )
instead introduced a flexible parameterization of the backflow or-
bitals based on artificial neural networks. In this case, A is pa-
rameterized with a MLP taking as inputs the electronic occupa-
tion numbers and outputing a many-body correction to the matrix
®. This approach allows the orbitals to dynamically change de-
pending on the positions of the electrons, thus allowing one to
include genuinely many-body correlations in the antisymmetric
part of the wavefunction.

Constrained hidden fermions Neural backflow transforma-
tions are not the only way to introduce flexible parameterizations
of the antisymmetric part of the wavefunction. The constrained
hidden fermion formalism builds on the idea of introducing a set
of N auxiliary fermionic particles, with positions q, and living
on M lattice sites. These auxiliary particles are used to effec-
tively mediate correlations among the physical degrees of free-
dom (Robledo Moreno et al. ). Calling A(r, q;0) a Slater
determinant for the extended (physical+hidden) system, the re-
sulting antisymmetric form for the physical system is given by

A(r;0) = A(x, F(r;0)). 15)
In this expression, F is a function, parameterized by a neural net-
work, mapping the physical positions to the hidden ones. This
approach has been shown to improve systematically over the neu-
ral backflow form for the 2D Hubbard model (Robledo Moreno
et al. ).

4.2 Continuous space

We now focus on describing the important case of first-quantized
electrons in continuous space, directly corresponding to the elec-
tronic Schrodinger equation. As in the discrete-space case, the
Slater—Jastrow form may be improved in a matter suitable for use
with neural quantum states by adding a backflow transformation,
in which the one-electron orbitals ¢;(r;; ) are replaced by many-
electron functions qgl-(r i {rh 0). The backflow transformation
can either modify the orbitals directly via a multiplicative and/or
additive term:

F(x;. (£):0) = ¢, fO;. (2):0) + £ P(x,. {x):0), (16)

or act as a quasiparticle transformation of the electron coordi-
nates:

d;i(rj» {r};0) = ¢i(rj + 5({1‘}§9)),

where the paramterized functions, fl.®, fiEB,E, are invariant to
permutations of {r}, and £({r}; @) is a three-component vector
that modifies r;. If we consider a determinant of orbitals of this
form,

A7)

¢1(ry;{r}) @1y {r}h)
: : , (18)

Py {E)) - dnry (r)

then we see that orbitals with backflow transformations are just
one example of a broader class of functions: in order for the de-
terminant to be antisymmetric, the matrix with elements ®@;; =
¢;(r;; {r}) must be permutation-equivariant; that is, exchanging
electrons k and / also exchanges columns k and /. While tradi-
tional Slater—Jastrow—backflow wavefunctions have had consid-
erable success, they also have limitations due to the choice of
fixed functional forms. The goal, therefore, is to come up with
more flexible permutation-equivariant functions. Here we high-
light several approaches that share this common theme.

Iterative backflow Taddei et al. ( ) introduced a form of
backflow that applied Eq. (17) repeatedly in an interative fashion.
Such an ansatz is formally equivalent to expressing the backflow
as a deep neural network (Ruggeri et al. ), albeit with arti-
ficial restriction on the dimensionality of the hidden layers. The
iterative backflow was used for studying the *He and “He liquids

DeepWF The DeepWF (Han et al. ) approach uses an
ansatz similar to a Slater—Jastrow wavefunction but with a sim-
pler antisymmetric term:

w(r) = S{r}, BATEhHA . (19)
The learned symmetric function .S is similar to a Jastrow factor
and ensures that the wavefunction captures the electron-nuclear
and electron-electron cusp conditions. The antisymmetric fac-
tors A° are constructed from the Vandermonde-like determi-
nant of an explicitly antisymmetric two-body function, A° =
ngigjgN (a(r,-,rj,rij) - a(rj, ri,rij)). The two-body antisym-
metric function is entirely learned. Such a functional form can be
evaluated in O(N?) operations, compared to (N ?>) for a determi-
nant. However, the use of a simplified antisymmetric function is
also likely to limit the accuracy achieved: DeepWF obtains only



-140.00

PauliNet
-150.00 - (ground
E 3 PauliNet
& ] (transition)
> -154.005 FermiNet
> I (ground)
g 154.604 (transitio
5 3 (transition)
4 ONC T Hartree-Fock
-154.6¢74 N CCSD(T)
I 11 1 1
102
— PauliNet
T,\ FermiNet
S0l it | CCSD(T)
2 Tl YN e MR-CC
= 10 | Experiment
<
Ly
<
10° T T T T T T T T T
101 102 103 10% 10°

Iterations

Fig. 5 | Automerization of cyclobutadiene with neural-network
ansatzes. Both PauliNet and FermiNet predict relative energies within
the range of experimental values and agree with multireference cou-
pled cluster. The PauliNet converges more quickly, while the FermiNet
reaches lower total energy. Figure modified from Spencer et al. ( ).

43.6% of the correlation energy for the beryllium atom and does
not even reach HF accuracy for the boron atom. The PauliNet and
FermiNet approaches described below do much better. Vanilla
PauliNet obtained 99.94% and 97.3% of the correlation energies
for the beryllium and boron atoms, and FermiNet 99.97% and
99.83%, respectively. Furthermore, FermiNet and PauliNet both
substantially surpass conventional Slater-Jastrow-backflow (SJB)
wavefunctions on first-row atoms, for which nearly exact bench-
mark values exist.

PauliNet PauliNet (Hermann et al. ) builds upon HF or
CASSCEF orbitals as a physically meaningful baseline and takes
a neural network approach to the SJB wavefunction in order to
correct this baseline towards a high-accuracy solution (Fig. 4a).
Cusp conditions are explicitly met via the inclusion of cusp cor-
rection terms in the wavefunction (Ma et al. ). A graph-
convolutional block based on SchNet (Schiitt et al. )is used to
create a permutation-equivariant latent space representation de-
pending on the many-electron configuration. This embedding is
then passed into separate deep neural networks that learn the Jas-
trow factor and a (cuspless) backflow transformation. Hermann et
al. ( ) introduced PauliNet with a purely multiplicative back-
flow as shown in Fig. 4a; Schitzle et al. ( ) generalized this
to a multiplicative and additive backflow as shown in Eq. (16).
PauliNet is optimized with a fixed number of Slater determinants.
Most of the results reported in Hermann et al. ( ) and Schitzle
et al. ( ) were obtained with around 10 determinants.
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FermiNet FermiNet (Pfau et al. ) takes a more minimalist
(or machine-learning maximalist) approach and attempts to train
a neural network to represent the entire wavefunction (Fig. 4b).
FermiNet uses two parallel networks, describing one- and two-
electron features respectively. The inputs to each layer in the one-
electron stream are permutation-equivariant functions of the ac-
tivations from the previous layers of the one- and two-electron
streams. The final layer projects the latent space into the required
number of orbitals, from which determinants can be formed and
evaluated. As with PauliNet, the final wavefunction is a sum over
a number of determinants. For most of the results reported in
Pfau et al. ( ), 16 determinants were used. FermiNet builds
up a rich description of electron-electron interactions from the
permutation-equivariant mixing of information describing one-
and two-electron features. In particular, the electron-nuclear and
electron-electron cusps in the wavefunction are represented accu-
rately, despite not being encoded explicitly. Whereas PauliNet is
usually trained with the ADAM optimizer, FermiNet training was
found to be substantially improved when employing the KFAC
optimizer.

While both PauliNet and FermiNet exceed the accuracy of con-
ventional SJB wavefunctions on small systems, there are impor-
tant tradeoffs between the two models. Results from both on the
automerization of cyclobutadiene can be seen in Fig. 5. The Fer-
miNet is typically trained with a larger number of parameters than
the PauliNet, requiring more iterations and more computation per
iteration to converge, but it typically converges to a lower ab-
solute energy. Recently, Gerard et al. ( ) proposed a hybrid
ansatz which uses neural network layers similar to the SchNet and
PauliNet in a FermiNet-like architecture. This hybrid ansatz was
found to reach even lower absolute energies than the FermiNet on
systems like benzene and the potassium atom.

Potential energy surfaces Typically one optimises a wavefunc-
tion at a specific geometry but this quickly becomes prohibitively
expensive for exploring the high-dimensional potential energy
surface of even relatively small molecules. Scherbela et al. ( )
developed a training methodology that allows weight sharing be-
tween (simplified) PauliNet architectures targeting different ge-
ometries. By switching the geometry being trained at each epoch,
they showed that the computational cost for training across a set
of geometries can be improved by an order of magnitude without
affecting the accuracy of the final energies, with 95% of network
parameters shared across all geometries. This implies that the net-
work is learning features of electron correlation in general rather
than fitting to a specific geometry. They also demonstrated that
a wavefunction for a larger molecule could be initialised from a
wavefunction for a smaller molecule and could then be fine-tuned
in a relatively short optimization stage. Pretraining neural net-
work wavefunctions from smaller systems has also been shown
to dramatically accelerate convergence for Kagome lattice mod-
els (Yang et al. ).

In a similar vein, Gao & Giinnemann ( ,b) demonstrated
that a meta-learning approach, where a graph neural network is
used to parameterize a wavefunction model, can accurately rep-
resent the wavefunctions for multiple geometries, enabling a fully
quantum-mechanical potential energy surface to be represented in
a single model. Their approach used a FermiNet-like wavefunc-



tion model, but the meta-learning concept is directly applicable
to other wavefunction representations, assuming the wavefunc-
tion form is sufficiently flexible.

Periodic systems There has also been progress on using first-
quantized neural network architectures in periodic systems, such
as interacting quantum gases in low dimension (Pescia et al.

), the electron gas (Cassella et al. ; Li et al. ;
Wilson et al. ), and for small cells of solids such as lithium
hydride and graphene (Li et al. ). Again, sufficiently
expressive networks at the VMC level have been found capa-
ble of rivalling or surpassing the accuracy of fixed-node diffu-
sion Monte Carlo calculations using conventional Slater-Jastrow-
backflow trial wavefunctions.

4.3 Extensions

Pseudopotentials The electronic structure of heavy atoms, es-
pecially transition metals, is complicated and challenging for all
QC methods. The difficulty is compounded by the high com-
putational cost of variational Monte Carlo methods, which scale
roughly as O(Z 5) (Hammond et al. ), where Z is the nu-
clear charge. Whilst the core electrons contribute heavily to the
total energy, energy differences are largely determined by the be-
haviour of the valence electrons. The core electrons can therefore
be removed and the effective nuclear charge reduced by the use
of pseudopotentials. The use of pseudopotentials is common in
many methods, including density functional theory and conven-
tional variational Monte Carlo. Li et al. ( ) demonstrate that
effective core potentials can be readily combined with FermiNet
and achieve accuracy comparable to CCSDT(Q) extrapolated to
the complete basis set limit for first-row transition metal atoms.
The computational time per iteration was reduced by 43% (17%)
for the scandium (zinc) atom using an argon core. Again, this
approach is not restricted to FermiNet. Pseudopotentials can be
used with any first-quantized neural network wavefunction.

Diffusion Monte Carlo (DMC) Projector methods such as
DMC (Needs et al. ) and auxiliary-field Monte Carlo (Shi
& Zhang ) go beyond VMC by using stochastic algorithms
to sample the ground state without requiring its wavefunction to
be represented as a known function or network. DMC is in prin-
ciple exact but, for many-fermion systems, relies in practice on
the fixed-node approximation, in which collapse to the bosonic
ground state is avoided by imposing the sign structure of the trial
wavefunction on the DMC wavefunction. A DMC simulation
therefore samples (stochastically) the lowest energy state with the
same sign structure as the trial wavefunction. The improvements
that result from applying DMC to conventional Slater-Jastrow-
backflow trial functions optimized using VMC methods are sub-
stantial, explaining why DMC is so often used to provide im-
proved estimates of the ground-state wavefunction and energy.
Wilson et al. ( ) combined DMC with a FermiNet trial wave-
function. For first-row atoms, DMC captured much of the re-
maining correlation energy (94% of the difference between the
VMC energy and the exact energy in the case of the nitrogen
atom). However, Wilson et al. ( ) used a simplified FermiNet
that gave VMC energies higher than those reported by Pfau et

11

al. ( ), which were already within ImH of exact results for
all first-row atoms. Given evidence that the mean-field equiva-
lent of PauliNet can essentially match HF in the complete basis
set limit (Schitzle et al. ), it is possible that the remaining
error in PauliNet and FermiNet wavefunctions is dominated by
errors in the nodal surface, which are rarely sampled regions dur-
ing optimisation. If this is the case, diffusion Monte Carlo with
the fixed node approximation may not produce substantially lower
energies. On the other hand, since neural network wavefunctions
routinely capture over 90% of the correlation energy at the VMC
level, the need to perform expensive diffusion Monte Carlo cal-
culations is greatly reduced. More recently, Ren et al. ( )
showed that DMC can capture roughly half of the remaining cor-
relation energy for the atoms Li-Ar, when using a very small
FermiNet-based architecture. Whilstitis possible to achieve ener-
gies within chemical accuracy using FermiNet at the VMC level,
these calculations model the case for larger systems where con-
verging the energy with respect to network size might not be fea-
sible. Ren et al. ( ) went on to demonstrate that DMC using
FermilNet trial wavefunctions noticeably reduces the energy for
larger systems. In the case of the benzene dimer, the reduction
was 50mH.

Excited States Our discussion so far, and most VMC calcula-
tions, have focused on ground state properties. However, excited
states are of critical importance to understand the behaviour of
materials. Fortunately, recent algorithmic developments by mul-
tiple groups have demonstrated that the calculation of excited
states using VMC methods is feasible and can achieve an ac-
ceptable trade-off in accuracy and cost. Here we highlight three
such approaches utilizing conventional VMC wavefunctions. One
approach is the state-averaged VMC method (Dash et al. ;
Schautz & Filippi ), in which the average energy over multi-
ple states is minimised and individual states are projected out via
diagonalization within the basis of excited states. Similar tech-
niques are used with other quantum chemistry methods. Zhao
& Neuscamman ( ) instead minimized a different objective
function, such that the state with energy closest to a desired en-
ergy target is obtained. Pathak et al. ( ) suggested a simple al-
ternative, where a state is forced to be (approximately) orthogonal
to all lower energy states via a penalty term. These techniques can
be readily applied to VMC using neural-network wavefunctions
and, in particular, penalty function approaches have recently been
explored. As with ground-state calculations, the flexibility of the
wavefunction ansatz to represent the desired state is critical. En-
twistle et al. ( ) demonstrated that the PauliNet architecture
combined with a penalty function can represent the lowest few
excited states of molecules up to the size of benzene (Fig. 4c).
Relatedly, Choo et al. ( ) demonstrated that NQS on lattice
models can obtain the lowest-energy state of any given Abelian
symmetry by performing what is essentially a ground-state sim-
ulation in that symmetry sector, and multiple states of the same
symmetry using a penalty function. However, the most accurate
and efficient way to obtain excited states within VMC, irrespec-
tive of wavefunction ansatz, remains an open question (Cuzzocrea
et al. ).
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5 Electrons in second quantization

Instead of working directly with the infinite-dimensional Hilbert
space corresponding to the real-space Hamiltonian of Eq. (2), it
is common practice in QC to use a finite basis set. By choosing
a set of electronic basis functions {@;(r), @,(r), ... }, we can de-
fine a set of second-quantised operators cA:f (¢;) which create (an-
nihilate) an electron in the i-th basis function, and which satisfy
the canonical anticommutation relations {cA;r, ¢;} = 6;;. These
operators then act on the second-quantized wavefunction y, ,, ...,
which encodes amplitudes for different occupations of the orbitals
(Box 1). Projecting the real-space Hamiltonian onto this set of or-
bitals then yields the corresponding discretized Hamiltonian,

ij ijkl
where
1 Z
t; =J(pf(r)<—§V2—Z—lr_i{H)(pj(l‘)dr, (21
T
1
Ujjg = H @] (e ") T @)@ ) drdr’,  (22)

are matrix elements of the one- and two-electron terms in the real-
space Hamiltonian of Eq. (2). For simple basis functions such as
Gaussians or plane waves, the matrix elements can be evaluated
analytically. This Hamiltonian serves as the starting point for the
methods described in this section.

5.1 Fermionic neural quantum states

Instead of working directly with the occupation-number represen-
tation of the wavefunction (Box 1), itis also possible to map occu-
pation numbers n;, € {0, 1} onto degrees of freedom o-,f e {l,1}
of spin-1/2 particles, such that empty orbitals map to down spins
and occupied orbitals to up spins. This mapping makes it possi-
ble to leverage NQS and other methods for solving quantum spin
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systems. The same duality allows the creation and annihilation
operators appearing in the electronic Hamiltonian (Eq. 20) to be
written in terms of spin operators. This can be achieved, for exam-
ple, with the Jordan—Wigner mapping (Jordan & Wigner ),
that transforms annihilation and creation operators into, respec-
tively, lowering and raising spin operators 6'ji = (6’1’.c + i&; )/2.
This mapping is not unique, however, and there exist more recent
alternatives, such as parity or Bravyi—Kitaev encodings (Bravyi &
Kitaev ), both of which have been developed in the context
of quantum simulations.

Regardless of the choice of spin encoding, the final outcome is
a spin Hamiltonian with the general form

,
A=Y nz, (23)
p=1

defined as a linear combination with real coefficients hp of ép,
which are N-fold tensor products of single-qubit Pauli operators
and the identity: 1,6%,67, 6%

The ground state of the spin Hamiltonian in Eq. (23) can be
approximated using a spin-based NQS representation based on
complex-valued RBMs (Carleo & Troyer ). For a system of
N spins, the many-body amplitude corresponding to a state in the
oZ basis, i.e., o = (6‘1Z o-IZV), takes the compact form

M N
w(o;0)= o2i %0} H2cosh<bj —+ Z I/Vijcriz), 24)
j=1 i

with parameters 8 = (a;, b > w; j). This ansatz can be optimised
with VMC techniques (Box 3), typically relying on the stochas-
tic reconfiguration (Sorella ) approach. A number of works
have adopted this approach and achieved competitive variational
results for small basis sets (Choo et al. ; Yang et al. ),
even in conjunction with quantum computers (Iouchtchenko et al.

; Torlai et al. ). In Fig. 6 (a), we show the dissociation
curve of C,, in the STO-3G basis, using the RBM as described

above (Choo et al. ).



Solids The second-quantization framework also allows one to
treat solids, using as a basis the Bloch orbitals obtained by solving
the crystalline HF equations (Del Re et al. ). Creation and
annihiliation operators, é[:k and éik’ for electrons in band i with
crystal momentum k are introduced, and the resulting Hamilto-
nian is similar to Eq. (20), with the noticeable difference that the
one- and two-body matrix elements now depend on the crystal
momenta: 7, — t!.‘j and Ui = :.(jlkklzk3k4, with the four momenta
appearing in the two-body integrals satisfying the conservation of
the total crystal momentum. Using Gaussian-based atomic func-
tions as the single-particle basis and RBM wavefunctions to rep-
resent the many-body state, (Yoshioka et al. ) applied this
approach to study the electronic structure of solids. In Fig. 6 (b),
we show the computed ground-state energies for graphene crys-
tals as a function of the lattice constant.

Exact Sampling Fermionic NQS are typically sampled using
the MCMC approach commonly adopted in VMC (Box 2). How-
ever, the mixing rate of the MCMC algorithm is known to be slow
in some cases, such as close to phase transitions, and MCMC sim-
ulations can suffer from critical slowing down. A way to circum-
vent this limitation is to introduce model wavefunctions explic-
itly designed to allow exact sampling of their square modulus,
thus avoiding the need to use MCMC. One such family are au-
toregressive neural network wavefunctions (Sharir et al. ), a
complex-valued generalization of the autoregressive models com-
monly adopted in deep learning. Such networks represent nor-
malized wavefunctions and allow one to directly obtain perfectly
uncorrelated samples; this is useful as the wavefunction distribu-
tion for many QC problems can be highly multi-modal. The exact
sampling approach was applied to QC hamiltonians in a recent
work by Barrett et al. ( ). Optimizations in the way Hamilto-
nian matrix elements and the corresponding Monte Carlo estima-
tors are computed have made it possible to treat much larger sys-
tems than were accessible in the early applications of Choo et al.
( ). Specifically, Zhao et al. ( )) obtain competitive vari-
ational energies, improving on the CCSD energies of molecules
in minimal basis sets. Results for up to around 50 electrons in 80
orbitals (Na,COj; at equilibrium) have been obtained at relatively
modest computational cost.

5.2 ML-assisted selected CI

For many QC problems, although the dimension of the Hilbert
space grows exponentially with system size, the number of rele-
vant configurations in the ground state typically remains sparse.
This suggests that by efficiently selecting the relevant configu-
rations and then diagonalising the Hamiltonian on the reduced
subspace, one can achieve highly accurate results. This set of ap-
proaches is also known as selected CI (Giner et al. ; Holmes
et al. ; Huron et al. ; Sharma et al. ). Different
flavours of selected CI vary in the way relevant configurations are
selected.
One well-known approach is called Monte Carlo CI (MCCI)
(Greer ) and can be briefly summarised as follows:
1. Start from a finite set of configurations S; = {|x)}
2. By considering single or double excitations starting from
configurations in .S}, construct an expanded set Sl.’ .
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3. Construct the Hamiltonian H; for the expanded set S} and
diagonalise to obtain the wavefunction coefficients for the
configurations in the set.

4. Discard the configurations whose coefficient is less than a
given threshold c.;,. The remaining configurations then
form a new set of configurations S, ;.

5. Repeat until convergence.

ML techniques can be used to improve selection of the configu-
ration set. One such approach is to perform supervised learning
(Coe ; Glielmo et al. ), where a neural network is trained
to predict the wavefunction coefficients using the data from the
MCCI method, i.e., the wavefunction coefficients of the configu-
rations in the set Si’ . After training, the network can be queried or
sampled to select the configurations with the largest coefficients.
In other words, the network is used to bootstrap and predict the
coefficients of configurations not yet seen in the data set. It was
shown in Coe ( ) that such an approach converges faster than
the vanilla MCCI method.

The task of selecting configurations for selected CI can also be
cast as areinforcement-learning task where the state is the current
set of configurations and an agent is trained to perform actions
on the set to iteratively modify the configurations with the aim
of minimising the variational energy. This approach was applied
in Goings et al. ( ) to achieve near-FCI accuracy for small
molecules in a small basis set.

6 Challenges and outlook

Ab-initio QC with neural-network wavefunctions has only just
emerged as a viable path to highly accurate electronic-structure
methods, yet it already competes with established approaches that
have been developed for decades. We imagine that it may become
the methodology with the best trade-off between efficiency and
accuracy for systems with up to one to two hundred electrons and
a nontrivial electronic structure. Before that can happen, how-
ever, several challenges must be addressed. All the methods are
currently in a development stage and only limited benchmarking
is available. As such, it is not yet clear whether the excellent
accuracy seen so far will be maintained across a broader range
of chemical systems, or how rapidly the accuracy will degrade
with system size. Related to this is our incomplete understanding
of what limits the accuracy of neural-network ansatzes, and how
their success or failure is related to physical phenomena such as
strong correlation. Since the underlying electronic problem is ex-
ponentially hard but the algorithms are polynomial, they must be
limited in accuracy in some ways. It is not currently clear, how-
ever, whether the limitations seen to date are caused by the re-
stricted expressiveness of the neural networks or by difficulties in
optimization or both. For instance, while it has been proven that
a single generalized Slater determinant is in principle sufficient to
represent any antisymmetric function (Hutter ), it might not
be possible to parametrize it with a polynomially scaling neural
network or train it within a polynomially scaling time.

Apart from these fundamental issues, there are many practi-
cal challenges. While the scaling of variational QMC with sys-
tem size is favourable, the prefactor due to the neural networks is
large. Until very recently, this limited applications to systems no
larger than the benzene molecule (42 electrons), which is three



to four times below our envisaged applicability range, although
results for a 108-electron simulation cell of solid LiH have now
been reported (Li et al. ). The prefactor can be reduced
by integrating traditional QC techniques such as pseudopotentials
(Lietal. ), developing more efficient neural-network archi-
tectures, or using ML techniques such as pre-training and trans-
fer learning. Specific to the discrete-basis second-quantized ap-
proaches is the issue of basis-set convergence, where sufficiently
large basis sets may increase the prefactor by up to three orders of
magnitude compared to minimal basis sets. Another challenge is
related to the stochastic optimization, which produces noise in the
converged energies that is especially amplified when calculating
small energy differences.

We are, however, optimistic that many of these challenges can
be addressed and can be addressed quickly, thanks to the rela-
tive simplicity of the framework based on variational QMC and
of neural networks compared to traditional QC approaches. In-
deed, this simplicity has already enabled rapid development of
multiple extensions to the first single-point ground-state calcula-
tions on molecules, including transferable wavefunctions, excited
states, and formulations for periodic systems, all originating from
multiple independent research groups.

First-quantized approaches such as FermiNet, PauliNet, and
their successor architectures already match essentially exact
benchmark results to within chemical accuracy for small systems.
Yet these networks are just a small subset of possible architectures
for representing antisymmetric wavefunctions, and it is unlikely
that the optimal ones were found on the first attempt, so we ex-
pect that significant innovation lies ahead. We believe that ab-
initio methods based on neural-network wavefunctions will be-
come an integral part of the QC toolbox that enables straightfor-
ward electronic-structure calculations of complex molecular sys-
tems.
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