
Libmbd: A general-purpose package
for scalable many-body dispersion calculations

Electronic Structure Software Development, CECAM HQ, Lausanne, 10 Oct 2022

Jan Hermann
FU Berlin, Department of Mathematics

https://jan.hermann.name

Van der Waals (dispersion) interactions

• Chemistry breaks and forms intramolecular bonds

• Intermolecular “bonds” break and form continually
all the time

• Liquids, molecular crystals, nanostructured materials,
surface science, soft matter

• Van der Waals forces—always attractive, weak on
atomic scale, importance grows with scale

| | | | | | | |
0 2 5 10 20 100 400 1000

 dispersion H-bonding ion-ion

dipole-dipole covalent bonds
ion-dipole

kJ/mol

intermolecular intramolecular

ion–dipole

H-bond

ion–induced
dipole

dipole–dipole

dispersion

dipole–induced
dipole

Modeling van der Waals interactions with DFT

• Van der Waals interactions—long-range
part of electron correlation energy

• No electronic-structure method
simultaneously general, accurate, and
efficient for vdW interactions

• All semilocal/hybrid functionals in DFT
are short-ranged (DFTB, ML)

vdW-DF
B3LYP
LDAD3M06

PBEVV10

SCAN

TS

MBD

XDM

PBE0

0 2 4 6 8
Å

1

+ −
II III

v(R) = (1 − f(R))v(R) + f(R)v(R)

Many-body dispersion (MBD)

ĤMBD = ∑
i

1
2 ∇2

i + ∑
i

1
2 ω2

i ̂ri
2+ 1

2 ∑
i≠j

ωiωj α0,iα0,j ̂ri ⋅ Tlr
ij ̂rj

Tkatchenko et al., Phys. Rev. Lett. 108, 236402 (2012)

• Coarse-grains electronic structure to
oscillators for efficiency, full many-
body treatment for accuracy

• Integrated with DFT, DFTB, ML
force fields

• Continuously improved and
extended

Libmbd
• Started as a reimplementation of

MBD in FHI-aims to ease
development

• Two requirements:
1. general modular framework for
quick method development
2. fast enough for production
calculations

• Embedded in FHI-aims, DFTB+,
Quantum Espresso, Q-Chem

Many-body dispersion “API”

• Molecular geometry

• : oscillator response
properties

• : long-range dipole
interaction

• Both functional (different
MBD methods) and
numerical parametrization

ωi, α0,i

Tlr
ij

ĤMBD = ∑
i

1
2 ∇2

i + ∑
i

1
2 ω2

i ̂ri
2+ 1

2 ∑
i≠j

ωiωj α0,iα0,j ̂ri ⋅ Tlr
ij ̂rj

Libmbd and Pymbd

• Two modes:
1. Fixed method, fast routine execution on variable
systems—Fortran
2. Fixed system, flexible experimental execution with
variable methods—Python

Fortran library iso_c_binding C header file

C-like binary
library

+ cffi

Python C extension
module

+

Python library

Compiling and installing Python/Fortran code

• Cmake for Fortran

• Setuptools/CFFI for Python

• Distribution with Conda-forge and PyPI

• Also available in ESL Bundle

Libmbd features
• MPI/Scalapack/ELSI

parallelization

• Finite and periodic systems

• Analytical gradients

• Converged default parameters

• MBD properties beyond energies
and forces

Code structure

Eqs. (24) to (26)

mbd_methods.f90

mbd.f90

Eq. (30)

Eqs. (14), (15), (19)

Eq. (36)

Eqs. (2), (16), (17), (33)

for each q-point in Brillouin zone (Eq. 8):

Eqs. (5) to (7), (18)

mbd_rpa.f90

or

Eqs. (28), (29)

Eq. (23)Eq. (22)

mbd_hamiltonian.f90

mbd_formulas.f90

mbd_scs.f90

mbd_coulomb.f90mbd_density.f90

α0, C6, RvdW

ᾱ0, C̄6, R̄vdW

only for MBD@rsSCS:

EMBD, ω̃2
k , C

npol(r)
E (1)

Coul

Eq
s.

(4
),

(1
0)

, (
11

),
(3

2)
, (

34
),

(3
5)

mb
d_
di
po
le
.f
90

Eq
. (

31
)

mb
d_
da
mp
in
g.
f9
0

V
V ref

Eqs. (3
6), (3

7)

h
Z

α df0
α df,ref

0
, ωdf

ωdf,ref

mbd_ts.f90

• Basic principle—as close
correspondence between physics/
math and code as possible

• Each “physics function” can be
defined through equations

• Separating physics code and
implementation “details”

Documentation

• Library—targeting
developers

• All physics code
documented locally with
equations

• Automatic generation
with FORD

Forward gradient accumulation

• Each physics function returns an output value and (when
requested) its gradient w.r.t. function inputs

• Chain-rule application separate from output value evaluation

Matrix operations and parallelization

• matrix_re_t and matrix_cplx_t types enable parallelization- and
real/complex-agnostic physics code

Tests and continuous integration

• Github Actions

• Tests, code style, documentation, coverage,
installation

Unit testing in Fortran with CTest

• Single Fortran executable parametrized by a test name

• Tests are collected by a Python script, executed by CTest

• Regression tests via Pymbd and Pytest

Changelog

• Structured changelog based on
Keep a Changelog

• Added, changed, removed,
fixed

• Automatically generated from
release tags

Summary

• Libmbd is a Fortran/Python software package for many-body
dispersion calculations aimed at both performant scalable
calculations and easy development

• Alignment between code and physics

• Lean development—modern techniques with simplest possible
tools, no “hacks”

• “How easily could I hand over maintenance to someone else?”

